A259860 a(n+8)+34*a(n+4)+a(n)=0 with a(0)-a(7) as shown.
1, 5, 12, 12, -29, -169, -408, -408, 985, 5741, 13860, 13860, -33461, -195025, -470832, -470832, 1136689, 6625109, 15994428, 15994428, -38613965, -225058681, -543339720, -543339720, 1311738121, 7645370045, 18457556052, 18457556052, -44560482149
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222.
- J. Riordan, The distribution of crossings of chords joining pairs of 2n points on a circle, Math. Comp., 29 (1975), 215-222. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (4,-8,4,-1).
Crossrefs
Cf. A259861.
Programs
-
Maple
A259860 := proc(n) if n <= 7 then op(n+1,[1, 5, 12, 12, -29, -169, -408, -408, 985, 5741, 13860, 13860]) ; else -34*procname(n-4)-procname(n-8) ; fi ; end proc: # R. J. Mathar, Jun 24 2024
-
Mathematica
LinearRecurrence[{4,-8,4,-1},{1,5,12,12},40] (* Harvey P. Dale, Mar 14 2016 *)
-
PARI
Vec((x+1)/(x^4-4*x^3+8*x^2-4*x+1) + O(x^50)) \\ Colin Barker, Jul 09 2015
Formula
G.f.: (x+1) / (x^4-4*x^3+8*x^2-4*x+1). - Colin Barker, Jul 09 2015