cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A053266 Coefficients of the '5th-order' mock theta function Phi(q).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 8, 8, 9, 10, 12, 12, 14, 15, 17, 18, 20, 21, 25, 26, 29, 31, 35, 36, 41, 43, 48, 51, 56, 59, 66, 70, 76, 81, 89, 94, 103, 109, 119, 126, 137, 144, 158, 167, 180, 191, 207, 218, 236, 250, 269, 285, 306, 323, 349, 368
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

Comments

In Ramanujan's lost notebook the generating function is denoted by phi(q) on pages 18 and 20, however on page 18 there is no minus one first term. - Michael Somos, Jul 07 2015

Examples

			G.f. = x + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 2*x^8 + 3*x^9 + ...
		

References

  • G. E. Andrews and B. C. Berndt, Ramanujan's lost notebook, Part III, Springer, New York, 2012, MR2952081, See p. 12, Equation (2.1.18) and also page 26 equation (2.4.8).
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 18, 20, 23.

Crossrefs

Other '5th-order' mock theta functions are at A053256, A053257, A053258, A053259, A053260, A053261, A053262, A053263, A053264, A053265, A053267.
Cf. A259910.

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, With[ {m = Sqrt[1 + 24 n/5]}, SeriesCoefficient[ -1 + Sum[ (-1)^k x^(5 k (3 k + 1)/2) / (1 - x^(5 k + 1)), {k, Quotient[m + 1, -6], Quotient[m - 1, 6]}] / QPochhammer[ x^5], {x, 0, n}]]]; (* Michael Somos, Jul 07 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, sqrtint(n\5), x^(5*k^2) / prod(i=1, 5*k+1, 1 - if( i%5==1 || i%5==4, x^i), 1 + x * O(x^(n - 5*k^2)))) - 1, n))}; /* Michael Somos, Jul 07 2015 */
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, m = sqrtint(1 + 24*n\5); A = x * O(x^n); polcoeff( sum(k=(m + 1)\-6, (m - 1)\6, (-1)^k * x^(5*k*(3*k + 1)/2) / (1 - x^(5*k + 1)), A) / eta(x^5 + A) - 1, n))}; /* Michael Somos, Jul 07 2015 */

Formula

G.f.: -1 + Sum_{k>=0} q^(5k^2)/((1-q)(1-q^4)(1-q^6)(1-q^9)...(1-q^(5k+1))).
3*a(n) = A053262(n) + A259910(n) unless n=0. - Michael Somos, Jul 07 2015
a(n) ~ sqrt(phi/2) * exp(Pi*sqrt(2*n/15)) / (5^(3/4) * sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 12 2019

A259551 Expansion of f(x^2, x^3) * f(-x^4, -x^6) / f(-x^2) in powers of x where f(,) is the Ramanujan general theta function.

Original entry on oeis.org

1, 0, 2, 1, 2, 1, 2, 1, 3, 2, 4, 4, 5, 4, 6, 5, 7, 6, 9, 8, 11, 11, 13, 13, 17, 15, 20, 19, 23, 23, 27, 27, 33, 33, 38, 39, 45, 45, 53, 54, 62, 63, 73, 74, 84, 86, 97, 100, 112, 115, 130, 134, 148, 154, 170, 176, 195, 202, 222, 232, 255, 264, 290, 301, 329
Offset: 0

Views

Author

Michael Somos, Jun 30 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Rogers-Ramanujan functions: G(q) (see A003114), H(q) (A003106).

Examples

			G.f. = 1 + 2*x^2 + x^3 + 2*x^4 + x^5 + 2*x^6 + x^7 + 3*x^8 + 2*x^9 + ...
G.f. = 1/q + 2*q^239 + q^359 + 2*q^479 + q^599 + 2*q^719 + q^839 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 23, 9th equation.

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{ 0, -2, -1, 1, 1, 1, -1, -2, 0, 1}[[Mod[k, 10, 1]]], {k, n}], {x, 0, n}];
    a[ n_] := SeriesCoefficient[ QPochhammer[x^5] QPochhammer[ -x^2, x^5] QPochhammer[ -x^3, x^5] / (QPochhammer[ x^2, x^10]  QPochhammer[ x^8, x^10]), {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^[ 1, 0, -2, -1, 1, 1, 1, -1, -2, 0][k%10 + 1]), n))};

Formula

Expansion of f(x^2, x^3) * G(x^2) in powers of x where f(,) is the Ramanujan general theta function and G() is a Rogers-Ramanujan function.
Euler transform of period 10 sequence [ 0, 2, 1, -1, -1, -1, 1, 2, 0, -1, ...].
G.f.: Product_{k>0} (1 - x^(5*k)) * (1 + x^(5*k - 3)) * (1 + x^(5*k - 2)) / ((1 - x^(10*k - 8)) * (1 - x^(10*k - 2))).
G.f.: (Sum_{k in Z} x^(k*(5*k + 1)/2)) / (Product_{k in Z} 1 - x^abs(10*k + 2)). - Michael Somos, Jul 09 2015
(-1)^n * A053258(n) + A053266(n) = a(n) unless n=0. Michael Somos, Jul 09 2015
A259910(n) = 2*A255065(n) + a(n). Michael Somos, Jul 09 2015

A279135 Coefficients of the '5th-order' mock theta function Phi(q) with a(0)=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 8, 8, 9, 10, 12, 12, 14, 15, 17, 18, 20, 21, 25, 26, 29, 31, 35, 36, 41, 43, 48, 51, 56, 59, 66, 70, 76, 81, 89, 94, 103, 109, 119, 126, 137, 144, 158, 167, 180, 191, 207, 218, 236, 250, 269, 285, 306, 323
Offset: 0

Views

Author

Michael Somos, Dec 06 2016

Keywords

Comments

In Ramanujan's lost notebook the generating function is denoted by phi(q) on pages 18 and 20, however on page 20 there is a minus one first term.

Examples

			G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 2*x^8 + 3*x^9 + ...
		

References

  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 18, 20, 23

Crossrefs

Cf. A053262. Essentially the same as A053266.
Cf. A259910.

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(5 k^2) / (QPochhammer[ x, x^5, k + 1] QPochhammer[ x^4, x^5, k]) // FunctionExpand, {k, 0, Sqrt[n/5]}], {x, 0, n}]];
    a[ n_] := If[ n < 0, 0, With[ {m = Sqrt[1 + 24 n/5]}, SeriesCoefficient[ Sum[ (-1)^k x^(5 k (3 k + 1)/2) / (1 - x^(5 k + 1)), {k, Quotient[m + 1, -6], Quotient[m - 1, 6]}] / QPochhammer[ x^5], {x, 0, n}]]];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, sqrtint(n\5), x^(5*k^2) / prod(i=1, 5*k+1, 1 - if( i%5==1 || i%5==4, x^i), 1 + x * O(x^(n - 5*k^2)))), n))};
    
  • PARI
    {a(n) = my(A, m); if( n<0, 0, m = sqrtint(1 + 24*n\5); A = x * O(x^n); polcoeff( sum(k=(m + 1)\-6, (m - 1)\6, (-1)^k * x^(5*k*(3*k + 1)/2) / (1 - x^(5*k + 1)), A) / eta(x^5 + A), n))};

Formula

G.f.: Sum_{k>=0} x^(5*k^2) / ((1 - x) * (1 - x^4) * (1 - x^6) * (1 - x^9)...(1 - x^(5*k+1))).
3*a(n) = A053262(n) + A259910(n) unless n=0. [Ramanujan, p. 23, equation 6]
a(n) ~ sqrt(phi/2) * exp(Pi*sqrt(2*n/15)) / (5^(3/4) * sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 12 2019
Showing 1-3 of 3 results.