A259920 Expansion of phi(-x^5) * f(-x^5) / f(-x, -x^4) in powers of x where phi() and f() are Ramanujan theta functions.
1, 1, 1, 1, 2, 0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 2, 3, 1, 3, 2, 5, 3, 5, 2, 6, 3, 6, 3, 7, 4, 7, 5, 9, 5, 9, 5, 11, 6, 11, 7, 14, 7, 15, 9, 17, 9, 17, 9, 21, 11, 21, 12, 25, 13, 25, 15, 29, 16, 31, 17, 35, 19, 37, 21, 42, 22, 44, 25, 49, 27, 52, 29, 58, 32, 61
Offset: 0
Keywords
Examples
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + x^6 + x^7 + 2*x^8 + x^9 + 2*x^10 + x^11 + ... G.f. = q^-1 + q^59 + q^119 + q^179 + 2*q^239 + q^359 + q^419 + 2*q^479 + q^539 + ...
References
- Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, p. 23, 8th equation.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^5] / (QPochhammer[ x, x^5] QPochhammer[ x^4, x^5]), {x, 0, n}]; a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^{ -1, 0, 0, -1, 2, -1, 0, 0, -1, 1}[[Mod[k, 10, 1]]], {k, n}], {x, 0, n}];
-
PARI
{a(n) = if( n<0, 0, polcoeff( prod(k=1, n, (1 - x^k + x * O(x^n))^ [1, -1, 0, 0, -1, 2, -1, 0, 0, -1][k%10+1]), n))};
Formula
Expansion of f(-x^5)^3 / (f(-x^10) * f(-x^2, -x^3)) in powers of x where f(,) is the Ramanujan general theta function.
Expansion of phi(-x^5) * G(x) in powers of x where f(,) is the Ramanujan general theta function and G() is a Rogers-Ramanujan function. - Michael Somos, Jul 09 2015
Euler transform of period 10 sequence [ 1, 0, 0, 1, -2, 1, 0, 0, 1, -1, ...].
G.f.: (Sum_{k in Z} (-1)^k * x^(5*k^2)) / (Product_{k in Z} 1 - x^abs(5*k + 1)).
Comments