A259939 Smallest Product_{i:lambda} prime(i) for any perfect partition lambda of n.
1, 2, 4, 6, 16, 18, 64, 42, 100, 162, 1024, 234, 4096, 1088, 1936, 798, 65536, 2300, 262144, 4698, 18496, 31744, 4194304, 8658, 234256, 167936, 52900, 46784, 268435456, 90992, 1073741824, 42294, 984064, 3866624, 5345344, 140300, 68719476736, 17563648, 6885376
Offset: 0
Keywords
Examples
For n=7 there are 4 perfect partitions: [4,1,1,1], [4,2,1], [2,2,2,1] and [1,1,1,1,1,1,1], their encodings as Product_{i:lambda} prime(i) give 56, 42, 54, 128, respectively. The smallest value is a(7) = 42.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..3000
- Eric Weisstein's World of Mathematics, Perfect Partition
Programs
-
Maple
b:= (n, l)-> `if`(n=1, 2^(l[1]-1)*mul(ithprime(mul(l[j], j=1..i-1))^(l[i]-1), i=2..nops(l)), min(seq(b(n/d, [l[], d]), d=numtheory[divisors](n) minus{1}))): a:= n-> `if`(n=0, 1, b(n+1, [])): seq(a(n), n=0..42);
-
Mathematica
b[n_, l_] := If[n==1, 2^(l[[1]]-1)*Product[Prime[Product[l[[j]], {j, 1, i-1}]]^(l[[i]]-1), {i, 2, Length[l]}], Min[Table[b[n/d, Append[l, d]], {d, Divisors[n] ~Complement~ {1}}]]]; a[n_] := If[n==0, 1, b[n+1, {}]]; Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Mar 23 2017, translated from Maple *)
Formula
a(n) = A258119(n,1).
Comments