cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259939 Smallest Product_{i:lambda} prime(i) for any perfect partition lambda of n.

Original entry on oeis.org

1, 2, 4, 6, 16, 18, 64, 42, 100, 162, 1024, 234, 4096, 1088, 1936, 798, 65536, 2300, 262144, 4698, 18496, 31744, 4194304, 8658, 234256, 167936, 52900, 46784, 268435456, 90992, 1073741824, 42294, 984064, 3866624, 5345344, 140300, 68719476736, 17563648, 6885376
Offset: 0

Views

Author

Alois P. Heinz, Jul 09 2015

Keywords

Comments

A perfect partition of n contains a unique partition for any k in {0,...,n}. See also A002033.

Examples

			For n=7 there are 4 perfect partitions: [4,1,1,1], [4,2,1], [2,2,2,1] and [1,1,1,1,1,1,1], their encodings as Product_{i:lambda} prime(i) give 56, 42, 54, 128, respectively.  The smallest value is a(7) = 42.
		

Crossrefs

Column k=1 of A258119.

Programs

  • Maple
    b:= (n, l)-> `if`(n=1, 2^(l[1]-1)*mul(ithprime(mul(l[j],
          j=1..i-1))^(l[i]-1), i=2..nops(l)), min(seq(b(n/d,
            [l[], d]), d=numtheory[divisors](n) minus{1}))):
    a:= n-> `if`(n=0, 1, b(n+1, [])):
    seq(a(n), n=0..42);
  • Mathematica
    b[n_, l_] := If[n==1, 2^(l[[1]]-1)*Product[Prime[Product[l[[j]], {j, 1, i-1}]]^(l[[i]]-1), {i, 2, Length[l]}], Min[Table[b[n/d, Append[l, d]], {d, Divisors[n] ~Complement~ {1}}]]];
    a[n_] := If[n==0, 1, b[n+1, {}]];
    Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Mar 23 2017, translated from Maple *)

Formula

a(n) = A258119(n,1).