A259940 Let A={A005574(n)}, the set of all numbers n for which n^2+1 is prime. The sequence lists the number of decompositions A005574(n) = A005574(n1) + A005574(n2) for some n1, n2 and every A005574(n)>1.
0, 1, 1, 1, 1, 1, 2, 3, 2, 3, 2, 4, 1, 3, 2, 1, 1, 4, 4, 5, 2, 5, 3, 5, 8, 5, 5, 8, 6, 7, 7, 6, 7, 6, 6, 5, 8, 7, 8, 7, 11, 12, 6, 12, 8, 11, 12, 8, 11, 9, 8, 10, 13, 11, 6, 10, 8, 12, 11, 13, 12, 10, 17, 9, 8, 10, 13, 11, 15, 11, 9, 8, 14, 13, 12, 8, 8, 7, 9, 7
Offset: 1
Keywords
Examples
a(20)=5 because A005574(20)= 110 => A005574(20)= A005574(7) + A005574(19)= 16 + 94, A005574(20)= A005574(8) + A005574(18)= 20 + 90, A005574(20)= A005574(10) + A005574(17)= 26 + 84, A005574(20)= A005574(11) + A005574(16)= 36 + 74, A005574(20)= A005574(13) + A005574(14)= 54 + 56, for a total of five decompositions.
Links
- Mathoverflow, Primes of the form a^2+1
Crossrefs
Cf. A005574.
Programs
-
Maple
T:=array(1..112): nn:=1000:k:=0: for i from 1 to nn do: p:=i^2+1:if type(p,prime)=true then k:=k+1:T[k]:=i: else fi: od: for n from 1 to k do:q:=T[n]:it:=0: for a from 1 to k do:p1:=T[a]: for b from a to k do:p2:=T[b]: if q=p1+p2 then it:=it+1: else fi: od: od: printf(`%d, `,it): od:
Comments