cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A259941 Smallest Product_{i:lambda} prime(i) for any complete partition lambda of n.

Original entry on oeis.org

1, 2, 4, 6, 12, 18, 30, 42, 84, 126, 198, 234, 390, 510, 714, 798, 1596, 1932, 2898, 3654, 5382, 6138, 7254, 8658, 14430, 15990, 20910, 21930, 30702, 33558, 37506, 42294, 84588, 94164, 113988, 117852, 176778, 194166, 244818, 259434, 382122, 392886, 448074
Offset: 0

Views

Author

Alois P. Heinz, Jul 09 2015

Keywords

Comments

A complete partition of n contains at least one partition for any k in {0,...,n}. See also A126796.

Examples

			For n=4 there are 2 complete partitions: [2,1,1], and [1,1,1,1], their encodings as Product_{i:lambda} prime(i) give 12, 16, respectively.  The smallest value is a(4) = 12.
		

Crossrefs

Column k=1 of A258118.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i<2, 2^n,
          `if`(n<2*i-1, b(n, iquo(n+1, 2)), min(
           b(n, i-1), b(n-i, i)*ithprime(i))))
        end:
    a:= n-> b(n, iquo(n+1, 2)):
    seq(a(n), n=0..60);
  • Mathematica
    b[n_, i_] := b[n, i] = If[i<2, 2^n, If[n<2*i-1, b[n, Quotient[n+1, 2]], Min[b[n, i-1], b[n-i, i]*Prime[i]]]]; a[n_] := b[n, Quotient[n+1, 2]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jan 15 2016, after Alois P. Heinz *)

Formula

a(n) = A258118(n,1).