A259941 Smallest Product_{i:lambda} prime(i) for any complete partition lambda of n.
1, 2, 4, 6, 12, 18, 30, 42, 84, 126, 198, 234, 390, 510, 714, 798, 1596, 1932, 2898, 3654, 5382, 6138, 7254, 8658, 14430, 15990, 20910, 21930, 30702, 33558, 37506, 42294, 84588, 94164, 113988, 117852, 176778, 194166, 244818, 259434, 382122, 392886, 448074
Offset: 0
Keywords
Examples
For n=4 there are 2 complete partitions: [2,1,1], and [1,1,1,1], their encodings as Product_{i:lambda} prime(i) give 12, 16, respectively. The smallest value is a(4) = 12.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(i<2, 2^n, `if`(n<2*i-1, b(n, iquo(n+1, 2)), min( b(n, i-1), b(n-i, i)*ithprime(i)))) end: a:= n-> b(n, iquo(n+1, 2)): seq(a(n), n=0..60);
-
Mathematica
b[n_, i_] := b[n, i] = If[i<2, 2^n, If[n<2*i-1, b[n, Quotient[n+1, 2]], Min[b[n, i-1], b[n-i, i]*Prime[i]]]]; a[n_] := b[n, Quotient[n+1, 2]]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jan 15 2016, after Alois P. Heinz *)
Formula
a(n) = A258118(n,1).
Comments