cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260003 Values f(1,x,y) with x>=0, y>0, in increasing order, where f is the Sudan function defined in A260002.

Original entry on oeis.org

1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25, 26, 27, 28, 29, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 43, 44, 45, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75
Offset: 1

Views

Author

Natan Arie Consigli, Jul 23 2015

Keywords

Comments

Equivalently, numbers of the form 2^y(x+2)-y-2.
Using f(1,x,y) = f(0, f(1,x,y-1), f(1,x,y-1)+y) = 2*f(1,x,y-1) + y
f(1,x,y) + y + 2 = 2*(f(1,x,y-1)+y-1+2) let g(y) = f(1,x,y) + y + 2 then g(y) = 2*g(y-1). This means g(y)=2^y*g(0) and f(1,x,y) + y + 2 = 2^y(f(1,x,0)+2) but f(1,x,0) = x so f(1,x,y) = 2^y(x+2) - y - 2.
In this list we suppose that y>0. If we include y=0, every natural number would be in the sequence.

Examples

			19 is listed because f(1,1,3) = 2^3*(1+2) - 3 - 2 = 19.
		

Crossrefs

Cf. A000325 (f(1,2,n)), A005408 (f(1,n,1)=2n+1), A048493 (f(1,n,2)), A079583 (f(1,1,n)), A123720 (f(1,4,n)), A133124(f(1,3,n)), A260002, A260004, A260005 (f(2,n,2)), A260006.