A260006 a(n) = f(1,n,n), where f is the Sudan function defined in A260002.
0, 3, 12, 35, 90, 217, 504, 1143, 2550, 5621, 12276, 26611, 57330, 122865, 262128, 557039, 1179630, 2490349, 5242860, 11010027, 23068650, 48234473, 100663272, 209715175, 436207590, 905969637, 1879048164, 3892314083, 8053063650, 16642998241, 34359738336
Offset: 0
Examples
a(4) = (2^4 - 1)*(4 + 2) = 90.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Wikipedia, Sudan function (see diagonal of "Values of F1(x, y)" table).
- Index entries for linear recurrences with constant coefficients, signature (6,-13,12,-4).
Crossrefs
Programs
-
Magma
[(2^n-1)*(n+2): n in [0..30]]; // Vincenzo Librandi, Aug 22 2015
-
Mathematica
Table[(2^n -1)(n+2), {n, 0, 30}] (* Michael De Vlieger, Aug 22 2015 *) CoefficientList[Series[x(3 -6x +2x^2)/((1-x)^2 (1-2x)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Aug 22 2015 *) LinearRecurrence[{6,-13,12,-4},{0,3,12,35},40] (* Harvey P. Dale, Mar 04 2023 *)
-
PARI
vector(40, n, n--; (2^n-1)*(n+2)) \\ Michel Marcus, Jul 29 2015
-
PARI
concat(0, Vec(x*(3-6*x+2*x^2)/((1-x)^2*(1-2*x)^2) + O(x^40))) \\ Colin Barker, Jul 29 2015
-
Sage
[(n+2)*(2^n -1) for n in (0..30)] # G. C. Greubel, Dec 30 2021
Formula
a(n) = (2^n -1)*(n+2).
a(n) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4) for n>3. - Colin Barker, Jul 29 2015
G.f.: x*(3 - 6*x + 2*x^2) / ((1-x)^2*(1-2*x)^2). - Colin Barker, Jul 29 2015
E.g.f.: 2*(x+1)*exp(2*x) - (x+2)*exp(x). - Robert Israel, Aug 23 2015
From Enrique Navarrete, Oct 02 2021: (Start)
a(n-2) = Sum_{j=2..n/2} binomial(n,j)*j, n even > 2.
a(n-2) = (Sum_{j=2..floor(n/2)} binomial(n,j)*j) + (1/2)*binomial(n, ceiling(n/2))*ceiling(n/2), n odd > 1. (End)
From Wolfdieter Lang, Nov 12 2021: (Start)
The previous bisection becomes for a(n):
Comments