cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260021 Solutions to phi(n) = phi(sigma(n)) that are not given by Theorem 3 of Golomb's manuscript.

Original entry on oeis.org

1, 3, 15, 45, 175, 357, 585, 608, 646, 962, 1071, 1292, 1443, 1508, 1586, 1664, 1665, 1898, 2275, 2295, 2379, 2745, 2847, 3285, 3848, 4082, 4329, 4514, 4641, 4736, 4845, 5018, 5402, 6123, 6232, 6344, 6475, 6771, 7052, 7065, 7137, 7202, 7215, 7527, 7592, 7803, 7808, 8103, 8138, 8398, 8541, 8685, 8906, 9344, 9526, 10322
Offset: 1

Views

Author

N. J. A. Sloane, Jul 14 2015

Keywords

References

  • S. W. Golomb, Equality among number-theoretic functions, Manuscript, no date; Second update, Dec 29, 1992.

Crossrefs

Setwise difference A006872 \ A354345. Subset of positions of zeros in A353636.
Cf. A354362 (subsequence).
Cf. also A005383, A353637, A354344.

Programs

  • PARI
    A354344(n) = { if(!(n%15),n/=15,if(!(n%9),n/=9,if(!(n%8),n/=8,if(!(n%3),n/=3,if(!(n%2),n/=2,return(0)))))); ((n>5) && isprime(n) && isprime((1+n)/2)); };
    A353637(n) = (eulerphi(sigma(n))==eulerphi(n));
    isA260021(n) = (A353637(n) && !A354344(n)); \\ Antti Karttunen, May 24 2022

Formula

{k | 1==A353637(k) and 0==A354344(k)}. - Antti Karttunen, May 25 2022

Extensions

Term a(1) = 1 prepended and terms a(14) .. a(56) added by Antti Karttunen, May 24 2022