A260031 Final nonzero digit of n^n in base 12.
1, 4, 3, 4, 5, 3, 7, 4, 9, 4, 11, 1, 1, 4, 3, 4, 5, 3, 7, 4, 9, 4, 11, 4, 1, 4, 3, 4, 5, 3, 7, 4, 9, 4, 11, 9, 1, 4, 3, 4, 5, 3, 7, 4, 9, 4, 11, 4, 1, 4, 3, 4, 5, 3, 7, 4, 9, 4, 11, 1, 1, 4, 3, 4, 5, 3, 7, 4, 9, 4, 11, 9, 1, 4, 3, 4, 5, 3, 7, 4, 9, 4, 11, 1
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- José María Grau and Antonio M. Oller-Marcén, On the last digit and the last non-zero digit of n^n in base b, arXiv preprint arXiv:1203.4066 [math.NT], 2012.
Programs
-
Haskell
import Math.NumberTheory.Moduli (powerMod) a260031 n = if x > 0 then x else f $ div (n ^ n) 12 where x = powerMod n n 12 f z = if m == 0 then f z' else m where (z', m) = divMod z 12 -- Reinhard Zumkeller, Jul 19 2015
-
Python
from gmpy2 import mpz, digits def A260031(n): s = digits(mpz(n)**mpz(n),12) t = s[-1] while t == '0': s = s[:-1] t = s[-1] return int(t,12) # Chai Wah Wu, Jul 19 2015
Extensions
More terms from Chai Wah Wu, Jul 19 2015