cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260039 Triangle read by rows giving numbers B(n,k) arising in the enumeration of doubly rooted tree maps.

Original entry on oeis.org

1, 8, 2, 72, 30, 3, 720, 380, 72, 4, 7780, 4690, 1245, 140, 5, 89040, 58254, 19152, 3192, 240, 6, 1064644, 734496, 279972, 60648, 7000, 378, 7, 13173216, 9416688, 3997584, 1046832, 162000, 13752, 560, 8, 167522976, 122687334, 56488950, 17086608, 3285990, 382140, 24885, 792, 9
Offset: 1

Views

Author

N. J. A. Sloane, Jul 22 2015

Keywords

Comments

See Mullin (1967) for precise definition.
What is the sequence 1, 8, 72, 720, 7780, 89040, 1064644, 13173216, 167522976, 2178520080, ... in the leading diagonal?

Examples

			Triangle begins:
    1;
    8,   2;
   72,  30,  3;
  720, 380, 72, 4;
  ...
		

Crossrefs

Row sums are A046715. Cf. A260040.

Programs

  • Maple
    bEq64 := proc(k,u)
        (k+1)*(2*u+k)!*(2*u+k+2)!/u!/(u+k+2)!/(u+k+1)!/(u+1)! ;
    end proc:
    Eq65 := proc(n,k)
        add( bEq64(k,u)*bEq64(k,n-k-1-u),u=0..n-k-1) ;
    end proc:
    B := proc(n,k)
        n*Eq65(n,k) ;
    end proc:
    for n from 1 to 10 do
        for k from 0 to n-1 do
            printf("%a,",B(n,k)) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, Jul 22 2015
  • Mathematica
    bEq64 [k_, u_] := (k + 1)*(2u + k)!*(2u + k + 2)!/u!/(u + k + 2)!/(u + k + 1)!/(u + 1)!;
    Eq65[n_, k_] := Sum[bEq64[k, u]*bEq64[k, n - k - 1 - u], {u, 0, n - k - 1}];
    B[n_, k_] := n*Eq65[n, k];
    Table[B[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, May 08 2023, after R. J. Mathar *)

Formula

T(n,k) = (k+1)*A260040(n,k), n>=1, 0<=k
Conjecture: T(n,0) = n*A168452(n-1). - R. J. Mathar, Jul 22 2015