cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A260215 Expansion of chi(-q) * chi(q^9) / (chi(q) * chi(-q^9)) in powers of q where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 2, -4, 6, -8, 12, -16, 22, -28, 36, -48, 60, -76, 96, -120, 150, -184, 228, -280, 340, -416, 504, -608, 732, -878, 1052, -1252, 1488, -1768, 2088, -2464, 2902, -3408, 3996, -4672, 5460, -6364, 7400, -8600, 9972, -11544, 13344, -15400, 17752, -20424
Offset: 0

Views

Author

Michael Somos, Aug 13 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + 2*x^2 - 4*x^3 + 6*x^4 - 8*x^5 + 12*x^6 - 16*x^7 + 22*x^8 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ q, q^2] QPochhammer[ q, -q] QPochhammer[ -q^9, q^18] QPochhammer[ -q^9, q^9], {q, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^4 + A) * eta(x^18 + A)^3 / (eta(x^2 + A)^3 * eta(x^9 + A)^2 * eta(x^36 + A)), n))};

Formula

Expansion of psi(-q) * psi(q^9) / (psi(q) * psi(-q^9)) in powers of q where psi() is a Ramanujan theta function.
Expansion of eta(q)^2 * eta(q^4) * eta(q^18)^3 / (eta(q^2)^3 * eta(q^9)^2 * eta(q^36)) in powers of q.
Euler transform of period 36 sequence [ -2, 1, -2, 0, -2, 1, -2, 0, 0, 1, -2, 0, -2, 1, -2, 0, -2, 0, -2, 0, -2, 1, -2, 0, -2, 1, 0, 0, -2, 1, -2, 0, -2, 1, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. of A128143.
a(n) = (-1)^n * A261156(n). Convolution inverse of A261156
a(2*n + 1) = -2 * A261203(n) = -2 * A261154(2*n + 1). 2 * a(2*n) = A261154(2*n) unless n=0.
a(3*n) = A261320(n). a(3*n + 1) = -2 * A261325(n). a(3*n + 2) = 2 * A260057(n). - Michael Somos, Nov 08 2015
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017

A260150 Expansion of f(x, x^5)^3 / (f(-x, -x^5) * f(-x^2, -x^2)^2) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, 4, 11, 24, 48, 92, 170, 304, 526, 884, 1451, 2336, 3700, 5772, 8876, 13472, 20207, 29988, 44072, 64184, 92680, 132760, 188758, 266512, 373838, 521152, 722266, 995432, 1364684, 1861548, 2527224, 3415344, 4595497, 6157700, 8218050, 10925848, 14472520
Offset: 0

Views

Author

Michael Somos, Nov 08 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 4*x + 11*x^2 + 24*x^3 + 48*x^4 + 92*x^5 + 170*x^6 + 304*x^7 + ...
G.f. = q^2 + 4*q^5 + 11*q^8 + 24*q^11 + 48*q^14 + 92*q^17 + 170*q^20 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 2^(-1/2) x^(-3/4) QPochhammer[ -x] / QPochhammer[x]^3 EllipticTheta[ 2, Pi/4, x^(3/2)]^3 / EllipticTheta[ 2, 0, x^(3/2)], {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^3 + A)^4 * eta(x^12 + A)^3 / (eta(x + A)^4 * eta(x^4 + A) * eta(x^6 + A)^5), n))};

Formula

Expansion of f(x) * psi(-x^3)^3 / (f(-x)^3 * psi(x^3)) in powers of x where psi(), f() are Ramanujan theta functions.
Euler transform of period 12 sequence [ 4, 1, 0, 2, 4, 2, 4, 2, 0, 1, 4, 0, ...].
a(n) = (-1)^n * A260057(n). a(n) = A261154(3*n + 2). a(2*n + 1) = 4 * A259033(n).
a(n) ~ exp(2*Pi*sqrt(n/3)) / (4*3^(5/4)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
Showing 1-2 of 2 results.