A260072 Primes p such that (p-1)^2+1 divides 2^(p-1)-1.
17, 257, 8209, 65537, 649801
Offset: 1
Examples
17 is in this sequence because (17 - 1)^2 + 1 = 257 divides 2^(17 - 1) - 1 = 65535; 65535 / 257 = 255.
Crossrefs
Cf. A081762 (primes p such that (p-1)^2 - 1 divides 2^(p-1) - 1).
Programs
-
Magma
[n: n in [1..2000000] | IsPrime(n) and (2^(n-1)-1) mod ((n-1)^2 + 1) eq 0];
-
Mathematica
fQ[n_] := PowerMod[2, n-1, (n-1)^2 + 1] == 1; p = 2; lst = {}; While[p < 10^9, If[ fQ@ p, AppendTo[lst, p]]; p = NextPrime@ p] (* Robert G. Wilson v, Jul 24 2015 *)
Comments