A260082 Least positive integer k such that (prime(k*n)-1)^2 = (prime(i*n)-1)*(prime(j*n)-1) for some integers 0 < i < j.
2, 2, 2, 21, 9, 10, 12, 14, 47, 32, 32, 171, 177, 175, 64, 187, 330, 206, 77, 467, 4, 126, 127, 355, 279, 982, 249, 1930, 105, 109, 659, 801, 269, 777, 703, 125, 819, 1347, 904, 1153, 549, 2344, 757, 1301, 1793, 303, 105, 3168, 2645, 3055, 110, 1619, 1580, 2423, 220, 965, 1397, 84, 988, 322
Offset: 1
Keywords
Examples
a(4) = 21 since (prime(21*4)-1)^2 = 432^2 = 18*10368 = (prime(2*4)-1)*(prime(318*4)-1). a(61) = 15160 since (prime(15160*61)-1)^2 = 14242116^2 = 47316*4286876916 = (prime(80*61)-1)*(prime(3326491*61)-1).
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
Dv[n_]:=Divisors[(Prime[n]-1)^2] L[n_]:=Length[Dv[n]] P[k_,n_,i_]:=PrimeQ[Part[Dv[k*n],i]+1]&&Mod[PrimePi[Part[Dv[k*n],i]+1],n]==0 Do[k=0;Label[bb];k=k+1; Do[If[P[k,n,i]&&P[k,n,L[k*n]-i+1],Goto[aa]],{i,1,L[k*n]/2}];Goto[bb];Label[aa];Print[n, " ", k];Continue,{n,1,60}]
Comments