cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260082 Least positive integer k such that (prime(k*n)-1)^2 = (prime(i*n)-1)*(prime(j*n)-1) for some integers 0 < i < j.

Original entry on oeis.org

2, 2, 2, 21, 9, 10, 12, 14, 47, 32, 32, 171, 177, 175, 64, 187, 330, 206, 77, 467, 4, 126, 127, 355, 279, 982, 249, 1930, 105, 109, 659, 801, 269, 777, 703, 125, 819, 1347, 904, 1153, 549, 2344, 757, 1301, 1793, 303, 105, 3168, 2645, 3055, 110, 1619, 1580, 2423, 220, 965, 1397, 84, 988, 322
Offset: 1

Views

Author

Zhi-Wei Sun, Jul 15 2015

Keywords

Comments

Conjecture: a(n) exists for any n > 0. In general, for any nonzero integer m and positive integer n there are distinct positive integers i,j,k such that (prime(i*n)+m)*(prime(j*n)+m) = (prime(k*n)+m)^2.

Examples

			a(4) = 21 since (prime(21*4)-1)^2 = 432^2 = 18*10368 = (prime(2*4)-1)*(prime(318*4)-1).
a(61) = 15160 since (prime(15160*61)-1)^2 = 14242116^2 = 47316*4286876916 = (prime(80*61)-1)*(prime(3326491*61)-1).
		

References

  • Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.

Crossrefs

Programs

  • Mathematica
    Dv[n_]:=Divisors[(Prime[n]-1)^2]
    L[n_]:=Length[Dv[n]]
    P[k_,n_,i_]:=PrimeQ[Part[Dv[k*n],i]+1]&&Mod[PrimePi[Part[Dv[k*n],i]+1],n]==0
    Do[k=0;Label[bb];k=k+1; Do[If[P[k,n,i]&&P[k,n,L[k*n]-i+1],Goto[aa]],{i,1,L[k*n]/2}];Goto[bb];Label[aa];Print[n, " ", k];Continue,{n,1,60}]