cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260108 Primes of the form sigma(k) + product of divisors of k.

Original entry on oeis.org

2, 5, 7, 11, 79, 23, 47, 769, 59, 32831, 83, 125093, 107, 3329, 167, 7333, 179, 12473, 227, 268435711, 263, 26113, 347, 359, 383, 46489, 467, 56489, 479, 14706467, 503, 70549, 20797247, 563, 587, 102121, 126457, 719, 133669, 153313, 171049, 839, 863, 191449, 887
Offset: 1

Views

Author

K. D. Bajpai, Jul 16 2015

Keywords

Comments

Alternatively: Primes arising in A259973.

Examples

			a(5) = 79; divisors(8) = {1,2,4,8}; sum = 1+2+4+8 = 15; product = 1*2*4*8 = 64; 15 + 64 = 79 which is prime.
a(8) = 769; divisors(27) = {1,3,9,27}; sum = 1+3+9+27 = 40; product = 1*3*9*27 = 729; 40+729 = 769 which is prime.
		

Crossrefs

Programs

  • Magma
    [k: n in[1..1000] | IsPrime(k) where k is (&*Divisors(n) + SumOfDivisors(n))];
  • Maple
    with(numtheory): A260108:= n-> (sigma(n) + convert( divisors(n), `*`)): select(isprime, [seq((A260108 (n), n=1..800))]);
  • Mathematica
    Select[Table[DivisorSigma[1, n] + Times @@ Divisors[n], {n, 1, 1000}], PrimeQ]
  • PARI
    for(n=1, 1000, d=divisors(n); k=sigma(n) + prod(i=1, #d, d[i]); if( isprime(k) , print1(k, ", ")));
    
  • PARI
    A007955(n)=if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2))
    list(lim)=v=List([2]); forprime(p=2,(lim-1)\2, if(isprime(2*p+1), listput(v,2*p+1))); forprime(p=2,sqrtnint(lim\1,3), my(t=p^3+p^2+p+1); if(t>lim,break); if(isprime(t), listput(v,t))); forcomposite(n=4,sqrtint(lim\1), my(t=A007955(n)+sigma(n)); if(t<=lim && isprime(t), listput(v,t))); Set(v) \\ Charles R Greathouse IV, Jul 17 2015