A260109 Expansion of f(x^3) * f(-x^3)^2 * psi(x)^2 / psi(-x) in powers of x where psi(), f() are Ramanujan theta functions.
1, 3, 4, 6, 9, 12, 14, 12, 16, 18, 18, 24, 21, 27, 28, 30, 36, 24, 38, 42, 40, 42, 36, 48, 43, 48, 52, 48, 54, 60, 62, 54, 56, 66, 72, 72, 74, 63, 72, 78, 81, 84, 64, 84, 88, 84, 90, 72, 98, 108, 100, 102, 72, 108, 110, 114, 112, 96, 126, 96, 133, 120, 104
Offset: 0
Keywords
Examples
G.f. = 1 + 3*x + 4*x^2 + 6*x^3 + 9*x^4 + 12*x^5 + 14*x^6 + 12*x^7 + ... G.f. = q + 3*q^3 + 4*q^5 + 6*q^7 + 9*q^9 + 12*q^11 + 14*q^13 + 12*q^15 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
Crossrefs
Cf. A124815.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ 1/4 x^(-1/2) EllipticTheta[ 2, 0, x^(1/2)]^2 EllipticTheta[ 2, Pi/4, x^(3/2)] EllipticTheta[ 4, 0, x^6]^2 / EllipticTheta[ 2, Pi/4, x^(1/2)], {x, 0, n}]; a[ n_] := SeriesCoefficient[ 2^(-3/2) x^(-1/8) QPochhammer[ -x^3] QPochhammer[ x^3]^2 EllipticTheta[ 2, 0, x^(1/2)]^2 / EllipticTheta[ 2, Pi/4, x^(1/2)], {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^3 + A) * eta(x^6 + A)^3 / (eta(x + A)^3 * eta(x^4 + A) * eta(x^12 + A)), n))};
Formula
Expansion of psi(-x^3) * phi(-x^6)^2 * psi(x)^2 / psi(-x) in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of phi(x) * f(x, x^5) * f(x^2, x^4)^2 in powers of x. - Michael Somos, Jul 18 2015
Expansion of q^(-1/2) * eta(q^2)^5 * eta(q^3) * eta(q^6)^3 / (eta(q)^3 * eta(q^4) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ 3, -2, 2, -1, 3, -6, 3, -1, 2, -2, 3, -4, ...].
a(n) = A124815(2*n + 1). a(3*n + 1) = 3 * a(n).
Comments