A260114 Expansion of f(x)^4 * phi(-x^3) / phi(-x) in powers of x where phi(), f() are Ramanujan theta functions.
1, 6, 14, 18, 21, 30, 38, 42, 43, 48, 62, 66, 74, 78, 64, 84, 98, 102, 110, 96, 133, 126, 108, 138, 112, 150, 158, 162, 183, 126, 182, 192, 194, 198, 160, 210, 180, 222, 230, 192, 242, 252, 288, 228, 208, 270, 278, 282, 273, 240, 252, 306, 314, 336, 294, 330
Offset: 0
Keywords
Examples
G.f. = 1 + 6*x + 14*x^2 + 18*x^3 + 21*x^4 + 30*x^5 + 38*x^6 + 42*x^7 + ... G.f. = q + 6*q^7 + 14*q^13 + 18*q^19 + 21*q^25 + 30*q^31 + 38*q^37 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := If[ n < 0, 0, With[ {m = 6 n + 1}, DivisorSum[ m, # KroneckerSymbol[ -3, #] KroneckerSymbol[ -4, m/#] &]]]; a[ n_] := If[ n < 0, 0, With[ {m = 6 n + 1}, DivisorSum[ m, m/# KroneckerSymbol[ 12, #] &]]]; a[ n_] := SeriesCoefficient[ QPochhammer[ -x]^4 EllipticTheta[ 4, 0, x^3] / EllipticTheta[ 4, 0, x], {x, 0, n}];
-
PARI
{a(n) = my(m = 6*n + 1); if (n<0, 0, sumdiv( m, d, d * kronecker( -3, d) * kronecker( -4, m/d)))};
-
PARI
{a(n) = my(m = 6*n + 1); if (n<0, 0, sumdiv( m, d, m/d * kronecker( 12, d)))};
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^13 * eta(x^3 + A)^2 / (eta(x + A)^6 * eta(x^4 + A)^4 * eta(x^6 + A)), n))};
Formula
Expansion of q^(-1/6) * eta(q^2)^13 * eta(q^3)^2 / (eta(q)^6 * eta(q^4)^4 * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 6, -7, 4, -3, 6, -8, 6, -3, 4, -7, 6, -4, ...].
a(2*n + 1) = 6 * A260518(n). - Michael Somos, Oct 07 2015
Comments