A260143 Runs of consecutive integers with same prime signature.
2, 3, 14, 15, 21, 22, 33, 34, 35, 38, 39, 44, 45, 57, 58, 75, 76, 85, 86, 87, 93, 94, 95, 98, 99, 116, 117, 118, 119, 122, 123, 133, 134, 135, 136, 141, 142, 143, 145, 146, 147, 148, 158, 159, 171, 172, 177, 178, 201, 202, 203, 205, 206, 213, 214, 215, 217, 218, 219, 230, 231, 244, 245
Offset: 1
Examples
Runs begin: (terms) (prime signature) {2, 3}, [1] {14, 15}, [1,1] {21, 22}, [1,1] {33, 34, 35}, [1,1] {38, 39}, [1,1] {44, 45}, [1,2] {57, 58}, [1,1] {75, 76}, [1,2] {85, 86, 87}, [1,1] {93, 94, 95}, [1,1] {98, 99}, [1,2] ...
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- D. A. Goldston, S. W. Graham, J. Pintz, and C. Y. Yıldırım, Small gaps between almost primes, the parity problem, and some conjectures of Erdos on consecutive integers, arXiv:0803.2636 [math.NT], 2008.
- MathOverflow, Question on consecutive integers with similar prime factorizations
- Eric Weisstein's World of Mathematics, Prime Signature
- OEIS Wiki, Prime signatures
Crossrefs
Main sequence is A052213.
Programs
-
Mathematica
Split[Range[2,250], Sort[FactorInteger[#1][[All, 2]]] === Sort[FactorInteger[#2][[All, 2]]]&] // Select[#, Length[#] > 1&]& // Flatten
-
PARI
is(n)=my(f=vecsort(factor(n)[,2])); f==vecsort(factor(n-1)[,2]) || f==vecsort(factor(n+1)[,2]) \\ Charles R Greathouse IV, Jul 17 2015
-
Python
from sympy import factorint def aupto(limit): aset, prevsig = {2}, [1] for k in range(3, limit+2): sig = sorted(factorint(k).values()) if sig == prevsig: aset.update([k - 1, k]) prevsig = sig return sorted(aset) print(aupto(250)) # Michael S. Branicky, Sep 20 2021
Comments