A260179 Primes pr(k) such that pr(k)+pr(k+1)+pr(k+6)+pr(k+7) = pr(k+2)+pr(k+3)+pr(k+4)+pr(k+5).
17, 23, 71, 149, 173, 233, 331, 359, 389, 419, 431, 503, 677, 727, 839, 853, 937, 971, 1019, 1201, 1229, 1277, 1327, 2213, 2221, 2237, 2593, 2689, 2797, 2999, 3019, 3167, 3221, 3253, 3821, 3823, 4027, 4111, 4201, 4219, 4231, 4801, 5147, 5309, 5407, 5437
Offset: 1
Keywords
Examples
Starting from 71, the eight consecutive primes are 71, 73, 79, 83, 89, 97, 101, 103; and they satisfy 71+73+101+103=79+83+89+97, so 71 is in the sequence.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..500 from R. J. Mathar)
Crossrefs
Cf. A022885.
Programs
-
Maple
n := 1 ; Lp := [[0,1,6,7],[2,3,4,5]] ; for i from 1 do if add(ithprime(i+j),j=op(1,Lp)) = add(ithprime(i+j),j=op(2,Lp)) then printf("%d %d\n",n,ithprime(i)) ; n := n+1 ; end if; end do: # R. J. Mathar, Aug 06 2015
-
Mathematica
pr8Q[lst_]:=With[{tadr=TakeDrop[lst,{3,6}]},Total[tadr[[1]]] == Total[ tadr[[2]]]]; Transpose[Select[Partition[Prime[ Range[ 1000]],8,1], pr8Q]][[1]] (* The program uses the TakeDrop function from Mathematica version 10.2 *)