A260183 Expansion of f(x, x^2) * f(x^4, x^8) / f(-x^3, -x^6)^2 in powers of x where f(, ) is Ramanujan's general theta function.
1, 1, 1, 2, 3, 4, 6, 8, 10, 14, 18, 23, 30, 38, 47, 60, 74, 91, 114, 139, 169, 207, 250, 301, 364, 436, 520, 622, 739, 875, 1038, 1224, 1439, 1694, 1985, 2321, 2714, 3162, 3677, 4275, 4956, 5735, 6634, 7655, 8819, 10155, 11669, 13389, 15354, 17575, 20091
Offset: 0
Keywords
Examples
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 10*x^8 + 14*x^9 + ... G.f. = 1/q + q + q^3 + 2*q^5 + 3*q^7 + 4*q^9 + 6*q^11 + 8*q^13 + 10*q^15 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A003105.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2, x^12] QPochhammer[ x^10, x^12] QPochhammer[ x^12, x^24] QPochhammer[ x^8] / QPochhammer[x], {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^8 + A) * eta(x^12 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A) * eta(x^24 + A)), n))};
Formula
Expansion of q^(1/2) * eta(q^2) * eta(q^8) * eta(q^12)^2 / (eta(q) * eta(q^4) * eta(q^6) * eta(q^24)) in powers of q.
Euler transform of period 24 sequence [ 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, ...].
a(n) = A003105(2*n + 1).
Comments