A260185 a(n) is the number of ways to select an ordered pair of subsets of {2,...,n} such that each pair of elements from different subsets are relatively prime.
1, 3, 9, 21, 63, 111, 333, 693, 1521, 2577, 7731, 13491, 40473, 67833, 119241, 239481, 718443, 1340523, 4021569, 7494849, 13356657, 22271409, 66814227, 130266387, 268286823, 447212583, 896472063, 1684872063, 5054616189, 9566769789, 28700309367, 57402497367
Offset: 1
Keywords
Examples
For n=1 the 1 pair of sets is [{},{}]. For n=2 the 3 pairs of sets are [{},{}], [{2},{}], and [{},{2}]. For n=3 the 9 pairs of sets are [{},{}], [{2},{}], [{},{2}], [{3},{}], [{},{3}], [{2,3},{}], [{},{2,3}], [{2},{3}], and [{3},{2}].
References
- National Olympiad in Informatics 2015, China, Day 1 Problem 3.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..100 (first 80 terms from Giovanni Resta)
- Sirius Caffrey, C++ program for A260185
- Sirius Caffrey, Python program for A260185
Programs
-
Python
# see link above
Formula
a(p) = 3*a(p-1) for p prime. - Alois P. Heinz, Jul 19 2015
Extensions
a(31)-a(32) from Giovanni Resta, Jul 18 2015
Comments