cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A258591 Expansion of (phi(-x^2) * phi(-x^4)^2 / phi(-x)^3)^2 in powers of x where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, 12, 80, 400, 1664, 6056, 19904, 60320, 171008, 458428, 1171552, 2872368, 6790656, 15544136, 34568576, 74901984, 158507008, 328277848, 666568592, 1329014992, 2605464320, 5028397952, 9563654976, 17942323424, 33232441344, 60814373780, 110029864416
Offset: 0

Views

Author

Michael Somos, Nov 06 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 12*x + 80*x^2 + 400*x^3 + 1664*x^4 + 6056*x^5 + 19904*x^6 + ...
		

Crossrefs

Cf. A260186.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^2]^2 EllipticTheta[ 4, 0, x^4]^4 / EllipticTheta[ 4, 0, x]^6, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 * eta(x^4 + A)^3 / (eta(x + A)^6 * eta(x^8 + A)^2))^2, n))};

Formula

Expansion of (eta(q^2)^5 * eta(q^4)^3 / (eta(q)^6 * eta(q^8)^2))^2 in powers of q.
Euler transform of period 8 sequence [ 12, 2, 12, -4, 12, 2, 12, 0, ...].
a(n) = A260186(2*n).

A258593 Expansion of (phi(x^2) * psi(x^2) / phi(-x)^2)^2 in powers of x where phi(), psi() are Ramanujan theta functions.

Original entry on oeis.org

1, 8, 46, 208, 805, 2776, 8742, 25584, 70450, 184232, 460832, 1108848, 2578295, 5814992, 12760598, 27317056, 57174768, 117223008, 235818894, 466154416, 906606234, 1736736024, 3280271526, 6114139616, 11255369609, 20478505104, 36849912318, 65619691088
Offset: 0

Views

Author

Michael Somos, Nov 06 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 8*x + 46*x^2 + 208*x^3 + 805*x^4 + 2776*x^5 + 8742*x^6 + ...
G.f. = q + 8*q^3 + 46*q^5 + 208*q^7 + 805*q^9 + 2776*q^11 + 8742*q^13 + ...
		

Crossrefs

Cf. A260186.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (1/4) x^(-1/2) (EllipticTheta[ 3, 0, x^2] EllipticTheta[ 2, 0, x] / EllipticTheta[ 4, 0 ,x]^2)^2, {x, 0, n}];
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -x^2]^2 QPochhammer[ -x^2, x^2] / EllipticTheta[ 4, 0, x]^2)^2, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A)^7 / (eta(x + A)^4 * eta(x^2 + A) * eta(x^8 + A)^2))^2, n))};

Formula

Expansion of (f(x^2)^2 / (chi(-x^2) * phi(-x)^2))^2 in powers of x where phi(), chi(), f() are Ramanujan theta functions.
Expansion of q^(-1/2) * (eta(q^4)^7 / (eta(q)^4 * eta(q^2) * eta(q^8)^2))^2 in powers of q.
Euler transform of period 8 sequence [ 8, 10, 8, -4, 8, 10, 8, 0, ...].
-4 * a(n) = A260186(2*n + 1).
a(n) ~ exp(2*Pi*sqrt(n)) / (256*n^(3/4)). - Vaclav Kotesovec, Nov 15 2017
Showing 1-2 of 2 results.