A258591 Expansion of (phi(-x^2) * phi(-x^4)^2 / phi(-x)^3)^2 in powers of x where phi() is a Ramanujan theta function.
1, 12, 80, 400, 1664, 6056, 19904, 60320, 171008, 458428, 1171552, 2872368, 6790656, 15544136, 34568576, 74901984, 158507008, 328277848, 666568592, 1329014992, 2605464320, 5028397952, 9563654976, 17942323424, 33232441344, 60814373780, 110029864416
Offset: 0
Keywords
Examples
G.f. = 1 + 12*x + 80*x^2 + 400*x^3 + 1664*x^4 + 6056*x^5 + 19904*x^6 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A260186.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^2]^2 EllipticTheta[ 4, 0, x^4]^4 / EllipticTheta[ 4, 0, x]^6, {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^5 * eta(x^4 + A)^3 / (eta(x + A)^6 * eta(x^8 + A)^2))^2, n))};
Formula
Expansion of (eta(q^2)^5 * eta(q^4)^3 / (eta(q)^6 * eta(q^8)^2))^2 in powers of q.
Euler transform of period 8 sequence [ 12, 2, 12, -4, 12, 2, 12, 0, ...].
a(n) = A260186(2*n).
Comments