A260208 Least prime p such that 2p*n+1 = prime(q*n) for some prime q.
2, 3, 2, 107, 271, 3, 3, 523, 17, 191, 73, 2707, 587, 2017, 19, 233, 57193, 7583, 9791, 7, 2111, 1373, 43, 109, 1283, 463, 8179, 25583, 7489, 1733, 9011, 7753, 7853, 887, 10141, 71, 1373, 7927, 509, 1433, 4513, 2399, 4211, 26407, 307, 2843, 58579, 3121, 5519, 38371
Offset: 1
Keywords
Examples
a(5) = 271 since 2*271*5+1 = 2711 = prime(79*5) with 271 and 79 both prime.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..1000
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
PQ[n_,p_]:=PrimeQ[p]&&PrimeQ[PrimePi[p]/n] Do[k=1;While[!PQ[n,2*Prime[k]*n+1],k=k+1];Print[n, " ", Prime[k]],{n,1,50}]
Comments