A260209 Values A such that p=prime(n) satisfies binomial(2p-1, p-1) == 1 + A*p (mod p^4).
1, 3, 25, 245, 121, 169, 867, 3249, 6877, 9251, 961, 15059, 57154, 61017, 68479, 106742, 201898, 208376, 107736, 176435, 330398, 237158, 158447, 213867, 903264, 856884, 21218, 755634, 1259386, 944906, 161290, 531991, 150152, 656914, 1287658, 592826, 640874
Offset: 1
Keywords
Links
- Felix Fröhlich, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[n_] := Block[{p = Prime@ n}, (Mod[ Binomial[2p - 1, p - 1], p^4] - 1)/p]; Array[f, 37] (* Robert G. Wilson v, Jul 29 2015 *)
-
PARI
a(n) = p=prime(n); (lift(Mod(binomial(2*p-1, p-1), p^4))-1)/p
Comments