A260213 Numbers j such that j = (c_1 + k)*(c_2 + k)*...*(c_m + k) for some k > 0 where c_1, c_2, ..., c_m is the centesimal expansion of j.
114, 120, 147, 198, 264, 420, 500, 506, 513, 525, 533, 550, 558, 568, 581, 648, 1102, 1116, 1168, 1302, 1320, 1377, 1680, 1692, 1710, 1720, 1734, 1755, 1771, 1872, 2106, 2132, 2310, 2332, 2380, 2664, 2714, 2736, 2790, 2914, 2940, 3312
Offset: 1
Examples
114 = (1 + 5)*(14 + 5) and 114 = (20 - 1)*(20 - 14). 1710 = (17 + 28)*(10 + 28) and 1710 = (55 - 17)*(55 - 10).
Links
- Pieter Post and Giovanni Resta, Table of n, a(n) for n = 1..295 (terms < 10^12, first 141 terms from Pieter Post)
Crossrefs
Cf. A055482.
Programs
-
PARI
is(n)=my(d=digits(n,100),t); while((t=vecprod(d))
99 \\ Charles R Greathouse IV, Aug 28 2015 -
Python
def pod(n,m,a): kk = 1 while n > 0: kk= kk*(n%m+a) n =int(n//m) return kk for c in range (1,10000): for a in range (1,100): if c==pod(c,100,a): print (c)
Comments