cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260213 Numbers j such that j = (c_1 + k)*(c_2 + k)*...*(c_m + k) for some k > 0 where c_1, c_2, ..., c_m is the centesimal expansion of j.

Original entry on oeis.org

114, 120, 147, 198, 264, 420, 500, 506, 513, 525, 533, 550, 558, 568, 581, 648, 1102, 1116, 1168, 1302, 1320, 1377, 1680, 1692, 1710, 1720, 1734, 1755, 1771, 1872, 2106, 2132, 2310, 2332, 2380, 2664, 2714, 2736, 2790, 2914, 2940, 3312
Offset: 1

Views

Author

Pieter Post, Jul 19 2015

Keywords

Comments

k cannot be larger than 99, because in that case the product of the terms c_i+k is larger than the number j itself. For j up to 10^12, the highest value for k is 71, for 910602 = (71+91)*(71+6)*(71+2).
All terms j < 10000 have the following property. j = c_1//c_2, so j = (c_1 + k)*(c_2 + k). Let kk = c_1 + c_2 + k then j = (kk - c_1)*(kk - c_2). For example, 513 = (5 + 14)*(13 + 14), kk = 5 + 13 + 14 = 32, so 513 = (32 - 5)*(32 - 13).

Examples

			114 = (1 + 5)*(14 + 5) and 114 = (20 - 1)*(20 - 14).
1710 = (17 + 28)*(10 + 28) and 1710 = (55 - 17)*(55 - 10).
		

Crossrefs

Cf. A055482.

Programs

  • PARI
    is(n)=my(d=digits(n,100),t); while((t=vecprod(d))99 \\ Charles R Greathouse IV, Aug 28 2015
  • Python
    def pod(n,m,a):
        kk = 1
        while n > 0:
            kk= kk*(n%m+a)
            n =int(n//m)
        return kk
    for c in range (1,10000):
        for a in range (1,100):
            if c==pod(c,100,a):
                print (c)