A260219 Least prime p such that pi(p*n)^2 + 1 = prime(q*n) for some prime q.
3, 47, 229, 379, 11, 2687, 1181, 24547, 5, 509, 5, 16619, 877, 22543, 3, 9067, 60337, 10667, 997, 24061, 18329, 56099, 1787, 58757, 108883, 416881, 157141, 11003, 14939, 113167, 101957, 77969, 613, 27947, 52153, 158551, 6197, 36607, 25237, 27179, 330689, 203617, 77419, 708269, 87649, 340381, 267601, 67153, 123377, 21617
Offset: 1
Keywords
Examples
a(1) = 3 since pi(3*1)^2 + 1 = 5 = prime(3*1) with 3 prime. a(8) = 24547 since pi(24547*8)^2 + 1 = 17686^2 + 1 = 312794597 = prime(2113417*8) with 24547 and 2113417 both prime.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28 - Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..72
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641 [math.NT], 2014.
Programs
-
Mathematica
PQ[n_, p_] := PrimeQ[p] && PrimeQ[PrimePi[p]/n]; Do[k = 0; Label[bb]; k = k + 1; If[PQ[n, PrimePi[Prime[k] * n]^2 + 1], Goto[aa], Goto[bb]]; Label[aa]; Print[n, " ", Prime[k]]; Continue,{n, 50}]
-
PARI
first(m)={my(v=vector(m),p,q,n);for(n=1,m,p=0;while(1,p++;q=1;while(primepi(prime(p)*n)^2 +1 >= prime(prime(q)*n), if(primepi(prime(p)*n)^2 +1 == prime(prime(q)*n),v[n]=prime(p);break(2),q++;))));v;} /* Anders Hellström, Jul 19 2015 */
Comments