A260252 Least prime p such that n = (prime(6*q)-1)/(prime(6*p)-1) for some prime q.
2, 18253, 3, 19, 2, 41, 43, 1087, 263, 29, 2, 281, 83, 8941, 613, 827, 7, 1867, 811, 139, 919, 13, 59, 11551, 10303, 10903, 2707, 3019, 1297, 5, 7333, 1609, 541, 701, 2281, 499, 2713, 6691, 41, 79, 1447, 1409, 263, 2129, 641, 2467, 7741, 1229, 523, 6781
Offset: 1
Keywords
Examples
a(1) = 2 since 1 = (prime(6*2)-1)/(prime(6*2)-1) with 2 prime. a(2) = 18253 since 2 = 2868672/1434336 = (prime(6*34673)-1)/(prime(6*18253)-1) with 18253 and 34673 both prime.
References
- Zhi-Wei Sun, Problems on combinatorial properties of primes, in: M. Kaneko, S. Kanemitsu and J. Liu (eds.), Number Theory: Plowing and Starring through High Wave Forms, Proc. 7th China-Japan Seminar (Fukuoka, Oct. 28-Nov. 1, 2013), Ser. Number Theory Appl., Vol. 11, World Sci., Singapore, 2015, pp. 169-187.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..2000
- Zhi-Wei Sun, Checking the conjecture for n = 1..10 and r = a/b with a,b = 1..30
- Zhi-Wei Sun, Problems on combinatorial properties of primes, arXiv:1402.6641.
Programs
-
Mathematica
PQ[p_]:=PrimeQ[p]&&PrimeQ[PrimePi[p]/6] Do[k=0;Label[aa];k=k+1;If[PQ[(Prime[6*Prime[k]]-1)*n+1],Goto[bb],Goto[aa]];Label[bb];Print[n, " ", Prime[k]];Continue,{n,1,50}]
Comments