A260295 Expansion of f(-x^2)^3 * f(-x^6)^3 / f(-x)^2 in powers of x where f() is a Ramanujan theta function.
1, 2, 2, 4, 5, 6, 7, 6, 9, 8, 11, 14, 10, 14, 15, 16, 14, 14, 19, 20, 21, 22, 21, 20, 28, 26, 24, 22, 29, 30, 26, 32, 26, 38, 35, 36, 37, 28, 39, 40, 41, 42, 34, 40, 43, 42, 47, 42, 49, 50, 56, 44, 42, 54, 55, 62, 57, 46, 50, 60, 56, 62, 50, 70, 60, 56, 74, 54
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x + 2*x^2 + 4*x^3 + 5*x^4 + 6*x^5 + 7*x^6 + 6*x^7 + ... G.f. = q^11 + 2*q^23 + 2*q^35 + 4*q^47 + 5*q^59 + 6*q^71 + 7*q^83 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^3 QPochhammer[ x^6]^3 / QPochhammer[ x]^2, {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^3 * eta(x^6 + A)^3 / eta(x + A)^2, n))};
-
PARI
q='q+O('q^99); Vec(eta(q^2)^3*eta(q^6)^3/eta(q)^2) \\ Altug Alkan, Jul 31 2018
Formula
Expansion of q^(-11/12) * eta(q^2)^3 * eta(q^6)^3 / eta(q)^2 in powers of q.
Euler transform of period 6 sequence [2, -1, 2, -1, 2, -4, ...]. - Michael Somos, Aug 01 2018
Comments