A260299 Numbers k such that hyperfactorial(prime(k)-1) == 1 (mod prime(k)).
1, 2, 4, 15, 17, 22, 23, 27, 28, 31, 34, 43, 46, 47, 54, 56, 61, 63, 67, 73, 75, 76, 83, 91, 92, 95, 96, 101, 107, 109, 111, 115, 117, 120, 129, 132, 141, 143, 144, 146, 149, 150, 153, 154, 155, 164, 167, 181, 190, 192, 193, 205, 208, 214, 215, 219, 224, 225
Offset: 1
Keywords
Examples
The 4th prime is 7, and the hyperfactorial of 7 is 4031078400000, which is congruent to 1 mod 7. - _Kellen Myers_, Aug 19 2015
Links
- Matthew Campbell and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 2516 terms from Campbell)
Programs
-
Mathematica
PrimePi[fQ[n_]:= Mod[Hyperfactorial[n - 1], n] == 1; Select[Prime@Range@250, fQ]] (* Vincenzo Librandi, Aug 20 2015 *)
-
PARI
is(n,p=prime(n))=prod(k=2,p-1,Mod(k,p)^k)==1 \\ Charles R Greathouse IV, Aug 29 2015
Formula
a(n) = pi(A260298(n)).