cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260327 Triangle read by rows: T(n,k) (0 <= k <= n) gives numerators of coefficients in Nörlund's polynomials D_{2n}(x).

Original entry on oeis.org

1, 0, -1, 0, 2, 5, 0, -16, -42, -35, 0, 144, 404, 420, 175, 0, -768, -2288, -2684, -1540, -385, 0, 1061376, 3327584, 4252248, 2862860, 1051050, 175175, 0, -552960, -1810176, -2471456, -1849848, -820820, -210210, -25025, 0, 200005632, 679395072, 978649472, 792548432, 397517120, 125925800, 23823800, 2127125
Offset: 0

Views

Author

N. J. A. Sloane, Jul 25 2015

Keywords

Examples

			Triangle begins:
1,
0,-1,
0,2,5,
0,-16,-42,-35,
0,144,404,420,175,
0,-768,-2288,-2684,-1540,-385,
0,1061376,3327584,4252248,2862860,1051050,175175,
...
The first few polynomials are (as listed in Nörlund, page 460):
[ 0] 1;
[ 2] -n/3;
[ 4]  n*(5*n + 2)/15;
[ 6] -n*(35*n^2  + 42*n     + 16)/63;
[ 8]  n*(175*n^3 + 420*n^2  + 404*n    + 144)/135;
[10] -n*(385*n^4 + 1540*n^3 + 2684*n^2 + 2288*n + 768)/99;
		

Crossrefs

For denominators see A260326.

Programs

  • Maple
    NorlundD := proc(n) if irem(n, 2) = 1 then return unapply(0, x) fi;
    series((z/sin(z))^x, z, n+1): return unapply((-1)^iquo(n,2)*n!*coeff(%, z, n), x) end: A260327_row := n -> seq(coeff(numer(NorlundD(2*n)(x)),x,k), k=0..n):
    for n from 0 to 6 do A260327_row(n) od; # Peter Luschny, Jul 01 2019
  • Mathematica
    NorlundD[nu_, n_] := (-2)^nu NorlundB[nu, n, n/2] // Simplify;
    Table[NorlundD[nu, n] // Together // Numerator // CoefficientList[#, n]&, {nu, 0, 12, 2}] (* Jean-François Alcover, Jul 01 2019 *)
  • PARI
    { A260327_row(n) = my(t,Y); Y=y+O(y^(2*n+2)); t = (2*n)! * Pol( polcoeff( exp( x * log(Y/sinh(Y)) + O(x^(n+1)) ), 2*n, y ) ); Vecrev(t*denominator(content(t))); } \\ Max Alekseyev, Jul 04 2019

Formula

E.g.f. Sum_{n>=0} D_{2n}(x) y^(2n)/(2n)! = (y/sinh(y))^x. - Max Alekseyev, Jul 04 2019

Extensions

Typo in data and example corrected by Jean-François Alcover, Jul 01 2019
More terms by Peter Luschny, Jul 01 2019