cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260412 Expansion of psi(x^2) * psi(x^3) / f(-x^2, -x^10) in powers of x where psi(), f(,) are Ramanujan theta functions.

Original entry on oeis.org

1, 0, 2, 1, 2, 2, 3, 2, 3, 4, 4, 5, 7, 6, 9, 10, 11, 12, 13, 15, 17, 19, 21, 24, 28, 30, 35, 37, 41, 47, 52, 56, 62, 69, 75, 83, 92, 99, 110, 121, 131, 143, 157, 170, 186, 203, 219, 239, 260, 281, 307, 332, 359, 389, 421, 453, 491, 530, 570, 617, 665, 714, 770
Offset: 0

Views

Author

Michael Somos, Jul 24 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 2*x^7 + 3*x^8 + 4*x^9 + ...
G.f. = 1/q + 2*q^47 + q^71 + 2*q^95 + 2*q^119 + 3*q^143 + 2*q^167 + ...
		

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x] EllipticTheta[ 2, 0, x^(3/2)] / (4 x^(5/8) QPochhammer[ x^2, x^12] QPochhammer[ x^10, x^12] QPochhammer[ x^12]), {x, 0, n}];
    nmax = 50; CoefficientList[Series[Product[(1-x^(4*k))^3 * (1-x^(6*k))^3 / ((1-x^(2*k))^2 * (1-x^(3*k)) * (1-x^(12*k))^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 11 2016 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^3 * eta(x^6 + A)^3 / (eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^12 + A)^2), n))};

Formula

Expansion of q^(1/24) * eta(q^4)^3 * eta(q^6)^3 / (eta(q^2)^2 * eta(q^3) * eta(q^12)^2) in powers of q.
Euler transform of period 12 sequence [ 0, 2, 1, -1, 0, 0, 0, -1, 1, 2, 0, -1, ...].
a(n) ~ exp(Pi*sqrt(n/6)) / (4*sqrt(n)). - Vaclav Kotesovec, Jul 11 2016