A260412 Expansion of psi(x^2) * psi(x^3) / f(-x^2, -x^10) in powers of x where psi(), f(,) are Ramanujan theta functions.
1, 0, 2, 1, 2, 2, 3, 2, 3, 4, 4, 5, 7, 6, 9, 10, 11, 12, 13, 15, 17, 19, 21, 24, 28, 30, 35, 37, 41, 47, 52, 56, 62, 69, 75, 83, 92, 99, 110, 121, 131, 143, 157, 170, 186, 203, 219, 239, 260, 281, 307, 332, 359, 389, 421, 453, 491, 530, 570, 617, 665, 714, 770
Offset: 0
Keywords
Examples
G.f. = 1 + 2*x^2 + x^3 + 2*x^4 + 2*x^5 + 3*x^6 + 2*x^7 + 3*x^8 + 4*x^9 + ... G.f. = 1/q + 2*q^47 + q^71 + 2*q^95 + 2*q^119 + 3*q^143 + 2*q^167 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x] EllipticTheta[ 2, 0, x^(3/2)] / (4 x^(5/8) QPochhammer[ x^2, x^12] QPochhammer[ x^10, x^12] QPochhammer[ x^12]), {x, 0, n}]; nmax = 50; CoefficientList[Series[Product[(1-x^(4*k))^3 * (1-x^(6*k))^3 / ((1-x^(2*k))^2 * (1-x^(3*k)) * (1-x^(12*k))^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jul 11 2016 *)
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^3 * eta(x^6 + A)^3 / (eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^12 + A)^2), n))};
Formula
Expansion of q^(1/24) * eta(q^4)^3 * eta(q^6)^3 / (eta(q^2)^2 * eta(q^3) * eta(q^12)^2) in powers of q.
Euler transform of period 12 sequence [ 0, 2, 1, -1, 0, 0, 0, -1, 1, 2, 0, -1, ...].
a(n) ~ exp(Pi*sqrt(n/6)) / (4*sqrt(n)). - Vaclav Kotesovec, Jul 11 2016
Comments