cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260413 Expansion of chi(-x) where chi() is a 3rd order mock theta function.

Original entry on oeis.org

1, -1, 1, 0, 0, 0, 1, -1, 0, 0, -1, 0, 1, -1, 1, 1, 0, 0, 0, -1, 0, 0, -1, 0, 1, -1, 1, 0, -1, 1, 1, -1, 0, 1, -1, 0, 1, -2, 1, 1, -1, 0, 1, -1, 0, 1, -2, 0, 1, -2, 1, 1, -1, 1, 1, -2, 1, 1, -2, 1, 2, -2, 1, 1, -2, 1, 1, -2, 0, 1, -3, 0, 2, -3, 2, 2, -2, 1, 2
Offset: 0

Views

Author

Michael Somos, Jul 24 2015

Keywords

Examples

			G.f. = 1 - x + x^2 + x^6 - x^7 - x^10 + x^12 - x^13 + x^14 + x^15 - x^19 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ (-x)^k^2 / Product[ 1 - (-x)^i + x^(2 i), {i, k}], {k, 0, Sqrt @ n}], {x, 0, n}]];
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, sqrtint(n), (-x)^k^2 / prod(i=1, k, 1 - (-x)^i + x^(2*i), 1 + x * O(x^(n - k^2)))), n))};

Formula

G.f.: Sum_{k>=0} (-x)^k^2 / ((1 - x + x^2) * (1 + x^2 + x^4) ... (1 - (-x)^k + x^(2*k))).
a(n) = (-1)^n * A053252(n) = A260412(n) - A053251(n).