cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260422 a(1) = 1, a(2n) = A205783(1+a(n)), a(2n+1) = A206074(a(n)), where A206074 and A205783 give binary codes for polynomials with coefficients 0 or 1 that are irreducible [resp. reducible] over Q.

Original entry on oeis.org

1, 4, 2, 9, 7, 6, 3, 16, 23, 14, 17, 12, 13, 8, 5, 27, 47, 36, 71, 24, 41, 28, 53, 21, 31, 22, 37, 15, 19, 10, 11, 42, 81, 70, 149, 54, 109, 106, 239, 38, 73, 62, 127, 44, 83, 80, 171, 34, 67, 48, 91, 35, 69, 56, 113, 26, 43, 32, 59, 18, 25, 20, 29, 63, 131, 122, 271, 105, 233, 216, 477, 82, 173, 159, 353, 155, 347, 345, 787, 57
Offset: 1

Views

Author

Antti Karttunen, Jul 25 2015

Keywords

Comments

This sequence can be represented as a binary tree. Each left hand child is produced as A205783(1+n), and each right hand child as A206074(n), when the parent contains n:
|
...................1...................
4 2
9......../ \........7 6......../ \........3
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
16 23 14 17 12 13 8 5
27 47 36 71 24 41 28 53 21 31 22 37 15 19 10 11
etc.

Crossrefs

Inverse: A260421.
Related permutations: A246202, A246378, A260423, A260425.
Differs from A246378 for the first time at n=16, where a(16)=27, while A246378(16)=26.

Programs

  • PARI
    uplim = (2^21) + (2^20);
    v206074 = vector(uplim);
    v205783 = vector(uplim); v205783[1] = 1;
    isA206074(n) = polisirreducible(Pol(binary(n)));
    i=0; j=1; n=2; while((n < uplim), if(!(n%65536),print1(n,", "));  if(isA206074(n), i++; v206074[i] = n, j++; v205783[j] = n); n++); print(n);
    A260422(n) = if(1==n, 1, if(0==(n%2), v205783[1+A260422(n/2)], v206074[A260422((n-1)/2)]));
    for(n=1, 8192, write("b260422.txt", n, " ", A260422(n)));

Formula

a(1) = 1, a(2n) = A205783(1+a(n)), a(2n+1) = A206074(a(n)).
As a composition of related permutations:
a(n) = A260423(A246378(n)).
a(n) = A260425(A246202(n)).