A260425 a(1) = 1, a(A014580(n)) = A206074(a(n)), a(A091242(n)) = A205783(1+a(n)), where A014580(n) [resp. A091242(n)] give binary codes for n-th irreducible [resp. reducible] polynomial over GF(2), while A206074 and A205783 give similar codes for polynomials with coefficients 0 or 1 that are irreducible [resp. reducible] over Q.
1, 2, 3, 4, 6, 8, 5, 9, 12, 15, 7, 10, 13, 16, 21, 26, 14, 18, 19, 22, 27, 34, 40, 24, 11, 30, 32, 35, 42, 51, 23, 60, 38, 20, 46, 49, 31, 52, 63, 76, 43, 36, 92, 57, 33, 68, 17, 74, 48, 78, 95, 114, 64, 54, 25, 135, 86, 50, 37, 102, 47, 28, 111, 72, 118, 140, 67, 165, 96, 82, 39, 195, 79, 128, 75, 56, 150, 70, 44
Offset: 1
Keywords
Links
Crossrefs
Programs
-
PARI
allocatemem(234567890); vecsize = (2^24)-4; uplim = 2^25; v091226 = vector(vecsize); A091226 = n -> v091226[n]; A091245(n) = ((n-A091226(n))-1); v206074 = vector(vecsize); A206074 = n -> v206074[n]; v205783 = vector(vecsize); A205783 = n -> v205783[n]; isA014580(n) = polisirreducible(Pol(binary(n))*Mod(1, 2)); \\ This function from Charles R Greathouse IV isA206074(n) = polisirreducible(Pol(binary(n))); v091226[1] = 0; v205783[1] = 1; i=0; j=1; n=2; while((n < uplim), if(!(n%65536),print1(n,", ")); if(isA206074(n), i++; v206074[i] = n, j++; v205783[j] = n); if(isA014580(n), v091226[n] = v091226[n-1]+1, v091226[n] = v091226[n-1]); n++); print(n); A260425(n) = if(1==n, 1, if(isA014580(n), A206074(A260425(A091226(n))), A205783(1+A260425(A091245(n))))); for(n=1, 4244, write("b260425.txt", n, " ", A260425(n)));
-
Scheme
(definec (A260425 n) (cond ((<= n 1) n) ((= 1 (A091225 n)) (A206074 (A260425 (A091226 n)))) (else (A205783 (+ 1 (A260425 (A091245 n)))))))