cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A260464 Number of chains in the poset of even-sized subsets of {1,2,...,n} ordered by inclusion.

Original entry on oeis.org

1, 1, 3, 7, 27, 91, 483, 2227, 15627, 92491, 810963, 5866147, 61720827, 527635291, 6476783043, 63886537267, 896245131627, 10019232896491, 158126425788723, 1975680877259587, 34645295464104027, 478434297205284091, 9228741116739540003, 139581878985127217107
Offset: 0

Views

Author

Geoffrey Critzer, Jul 26 2015

Keywords

Examples

			a(3)=7 because there are 4 chains of length zero: {{}}; {{1,2}}; {{1,3}}; {{2,3}} and there are 3 chains of length one: {{},{1,2}}; {{},{1,3}}; {{},{2,3}}.
		

Crossrefs

Programs

  • Mathematica
    nn = 20; c = Cosh[x] - 1; s = Sinh[x];Range[0, nn]! CoefficientList[Series[(c^2 + 2 c + 1 + s c + s)/(1 - c), {x, 0, nn}], x]
  • PARI
    my(x='x+O('x^33), c = cosh(x)-1, s=sinh(x)); Vec(serlaplace( (c^2 + 2*c + 1 + s*c + s)/(1 - c) )) \\ Joerg Arndt, Jul 27 2015

Formula

E.g.f.: (c^2 + 2*c + 1 + s*c + s)/(1 - c) where c = cosh(x)-1 and s=sinh(x).
a(n) ~ n! * (4/sqrt(3)+2 + (4/sqrt(3)-2)*(-1)^n) / log(2+sqrt(3))^(n+1). - Vaclav Kotesovec, Jul 27 2015
Showing 1-1 of 1 results.