A260516 Expansion of f(x, x^2) * f(x^2, x^10) in powers of x where f(,) is Ramanujan's general theta function.
1, 1, 2, 1, 1, 1, 0, 2, 0, 1, 1, 1, 2, 0, 1, 2, 1, 3, 1, 0, 0, 1, 2, 1, 1, 1, 1, 0, 2, 0, 0, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 0, 3, 1, 2, 1, 0, 2, 0, 1, 1, 2, 0, 1, 2, 0, 1, 2, 1, 1, 0, 1, 0, 0, 1, 0, 1, 4, 2, 0, 1, 1, 2, 2, 0, 0, 0, 2, 1, 1, 2, 2, 2, 1, 0, 1, 1
Offset: 0
Keywords
Examples
G.f. = 1 + x + 2*x^2 + x^3 + x^4 + x^5 + 2*x^7 + x^9 + x^10 + x^11 + ... G.f. = q^17 + q^41 + 2*q^65 + q^89 + q^113 + q^137 + 2*q^185 + q^233 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ x^3]^2 QPochhammer[ -x^2, x^4] / (QPochhammer[ x, x^2] QPochhammer[ x^12, x^24]), {x, 0, n}]; a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x^3] EllipticTheta[ 4, 0, x^4] EllipticTheta[ 2, Pi/4, x^3] / (x^(3/4) Sqrt[2] QPochhammer[ x]), {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^2 * eta(x^4 + A)^2 * eta(x^24 + A) / (eta(x + A) * eta(x^8 + A) * eta(x^12 + A)), n))};
-
PARI
q='q+O('q^99); Vec(eta(q^3)^2*eta(q^4)^2*eta(q^24)/(eta(q)*eta(q^8)*eta(q^12))) \\ Altug Alkan, Aug 01 2018
Formula
Expansion of q^(-17/24) * eta(q^3)^2 * eta(q^4)^2 * eta(q^24) / (eta(q) * eta(q^8) * eta(q^12)) in powers of q.
Euler transform of period 24 sequence [ 1, 1, -1, -1, 1, -1, 1, 0, -1, 1, 1, -2, 1, 1, -1, 0, 1, -1, 1, -1, -1, 1, 1, -2, ...].
Comments