A260518 Expansion of psi(x)^2 * f(-x^3)^3 / f(-x) in powers of x where psi(), f() are Ramanujan theta functions.
1, 3, 5, 7, 8, 11, 13, 14, 17, 16, 21, 23, 25, 27, 21, 32, 33, 35, 37, 32, 42, 38, 45, 47, 40, 51, 56, 55, 50, 48, 61, 63, 64, 70, 56, 62, 73, 80, 77, 63, 81, 83, 74, 87, 72, 91, 98, 95, 104, 64, 101, 103, 105, 107, 88, 112, 98, 115, 114, 112, 121, 123, 125
Offset: 0
Keywords
Examples
G.f. = 1 + 3*x + 5*x^2 + 7*x^3 + 8*x^4 + 11*x^5 + 13*x^6 + 14*x^7 + ... G.f. = q^7 + 3*q^19 + 5*q^31 + 7*q^43 + 8*q^55 + 11*q^67 + 13*q^79 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..2500
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^4 QPochhammer[ x^3]^3 / QPochhammer[ x]^3, {x, 0, n}];
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^3 + A)^3 / eta(x + A)^3, n))};
-
PARI
my(q='q+O('q^99)); Vec(eta(q^2)^4*eta(q^3)^3/eta(q)^3) \\ Altug Alkan, Aug 01 2018
Formula
Expansion of psi(x) * psi(x^3) * f(x, x^2)^2 in powers of x where psi(), f() are Ramanujan theta functions.
Expansion of q^(-7/12) * eta(q^2)^4 * eta(q^3)^3 / eta(q)^3 in powers of q.
Euler transform of period 6 sequence [ 3, -1, 0, -1, 3, -4, ...].
G.f.: Product_{k>0} (1 - x^(2*k))^4 * (1 + x^k + x^(2*k))^3.
Comments