cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260518 Expansion of psi(x)^2 * f(-x^3)^3 / f(-x) in powers of x where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 3, 5, 7, 8, 11, 13, 14, 17, 16, 21, 23, 25, 27, 21, 32, 33, 35, 37, 32, 42, 38, 45, 47, 40, 51, 56, 55, 50, 48, 61, 63, 64, 70, 56, 62, 73, 80, 77, 63, 81, 83, 74, 87, 72, 91, 98, 95, 104, 64, 101, 103, 105, 107, 88, 112, 98, 115, 114, 112, 121, 123, 125
Offset: 0

Views

Author

Michael Somos, Jul 28 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*x + 5*x^2 + 7*x^3 + 8*x^4 + 11*x^5 + 13*x^6 + 14*x^7 + ...
G.f. = q^7 + 3*q^19 + 5*q^31 + 7*q^43 + 8*q^55 + 11*q^67 + 13*q^79 + ...
		

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2]^4 QPochhammer[ x^3]^3 / QPochhammer[ x]^3, {x, 0, n}];
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^4 * eta(x^3 + A)^3 / eta(x + A)^3, n))};
    
  • PARI
    my(q='q+O('q^99)); Vec(eta(q^2)^4*eta(q^3)^3/eta(q)^3) \\ Altug Alkan, Aug 01 2018

Formula

Expansion of psi(x) * psi(x^3) * f(x, x^2)^2 in powers of x where psi(), f() are Ramanujan theta functions.
Expansion of q^(-7/12) * eta(q^2)^4 * eta(q^3)^3 / eta(q)^3 in powers of q.
Euler transform of period 6 sequence [ 3, -1, 0, -1, 3, -4, ...].
G.f.: Product_{k>0} (1 - x^(2*k))^4 * (1 + x^k + x^(2*k))^3.