cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260531 a(n) = (2^p+1)^(p-1) modulo p^2, where p is prime(n).

Original entry on oeis.org

1, 0, 21, 1, 45, 79, 120, 305, 484, 697, 404, 186, 1354, 603, 612, 2757, 945, 3051, 3552, 498, 950, 1186, 2657, 1781, 6403, 9192, 8035, 1927, 2181, 2713, 6097, 2621, 10139, 3476, 10878, 8608, 22609, 21028, 24550, 19031, 1, 12852, 33426, 27793, 34279, 11543
Offset: 1

Views

Author

Felix Fröhlich, Jul 28 2015

Keywords

Comments

The primes where a(n) == 1 are given by A260507.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{p = Prime@ n}, PowerMod[2^p + 1, p - 1, p^2]]; Array[f, 46] (* Robert G. Wilson v, Jul 29 2015 *)
  • PARI
    a(n) = lift(Mod(2^prime(n)+1, prime(n)^2)^(prime(n)-1))

Formula

a(n) = A098640(n)^(A000040(n)-1) modulo A000040(n)^2.