A260553 Primes p such that p = q^2 + 2*r^2 where q and r are also primes.
17, 43, 59, 67, 107, 139, 251, 307, 347, 379, 547, 587, 859, 1699, 1867, 1931, 3371, 3499, 3739, 4507, 5059, 5347, 6907, 6971, 7451, 10091, 10627, 10667, 11467, 12491, 18787, 20411, 21227, 22907, 29947, 32059, 32779, 37547, 38651, 39619, 49307, 49747, 53147
Offset: 1
Keywords
Examples
43 is in the sequence because 43 = 5^2 + 2*3^2 and 43, 5 and 3 are all primes.
Links
- Colin Barker and Chai Wah Wu, Table of n, a(n) for n = 1..1873 n = 1..150 from Colin Barker.
Programs
-
Mathematica
Select[#1^2 + 2 #2^2 & @@ # & /@ Tuples[Prime@ Range@ 60, 2], PrimeQ] // Sort (* Michael De Vlieger, Jul 29 2015 *)
-
PARI
lista(nn)=forprime(p=2, nn, forprime(r=2, sqrtint(p\2), if (issquare(q2 = p-2*r^2) && isprime(sqrtint(q2)), print1(p, ", ")););); \\ Michel Marcus, Jul 29 2015
-
PARI
list(lim)=my(v=List()); lim\=1; forprime(q=2, sqrtint((lim-9)\2), my(t=2*q^2); forprime(p=3, sqrtint(lim-t), my(r=t+p^2); if(isprime(r), listput(v, r)))); Set(v) \\ Charles R Greathouse IV, Oct 09 2024
-
Python
from sympy import prime, isprime n = 5000 A260553_list, plimit = [], prime(n)**2+8 for i in range(1, n): q = 2*prime(i)**2 for j in range(1, n): p = q + prime(j)**2 if p < plimit and isprime(p): A260553_list.append(p) A260553_list = sorted(A260553_list) # Chai Wah Wu, Jul 30 2015
Comments