cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260556 Primes p such that p = q^2 + 8*r^2 where q and r are also primes.

Original entry on oeis.org

41, 97, 193, 241, 401, 433, 601, 977, 1033, 1361, 1753, 2281, 2897, 3793, 4241, 4561, 5113, 6737, 6961, 7993, 10273, 11953, 12841, 13457, 17681, 22273, 22481, 26641, 27961, 32833, 37321, 42641, 49801, 49937, 54361, 57193, 58153, 63073, 63377, 76801, 94321
Offset: 1

Views

Author

Colin Barker, Jul 29 2015

Keywords

Examples

			601 is in the sequence because 601 = 23^2 + 8*3^2 and 601, 23 and 3 are all primes.
		

Crossrefs

Programs

  • Mathematica
    Select[#1^2 + 8 #2^2 & @@ # & /@ Tuples[Prime@ Range@ 80, 2], PrimeQ] // Sort (* Michael De Vlieger, Jul 29 2015 *)
  • PARI
    lista(nn) = {forprime(p=2, nn, forprime(r=2, sqrtint(p\8), if (issquare(q2 = p-8*r^2) && isprime(sqrtint(q2)), print1(p, ", "));););} \\ Michel Marcus, Aug 01 2015
  • Python
    from sympy import prime, isprime
    n = 5000
    A260556_list, plimit = [], prime(n)**2+32
    for i in range(1,n):
        q = 8*prime(i)**2
        for j in range(1,n):
            p = q + prime(j)**2
            if p < plimit and isprime(p):
                A260556_list.append(p)
    A260556_list = sorted(A260556_list) # Chai Wah Wu, Jul 30 2015