A260556 Primes p such that p = q^2 + 8*r^2 where q and r are also primes.
41, 97, 193, 241, 401, 433, 601, 977, 1033, 1361, 1753, 2281, 2897, 3793, 4241, 4561, 5113, 6737, 6961, 7993, 10273, 11953, 12841, 13457, 17681, 22273, 22481, 26641, 27961, 32833, 37321, 42641, 49801, 49937, 54361, 57193, 58153, 63073, 63377, 76801, 94321
Offset: 1
Keywords
Examples
601 is in the sequence because 601 = 23^2 + 8*3^2 and 601, 23 and 3 are all primes.
Links
- Colin Barker and Chai Wah Wu, Table of n, a(n) for n = 1..1510 (terms for n = 1..100 from Colin Barker).
Programs
-
Mathematica
Select[#1^2 + 8 #2^2 & @@ # & /@ Tuples[Prime@ Range@ 80, 2], PrimeQ] // Sort (* Michael De Vlieger, Jul 29 2015 *)
-
PARI
lista(nn) = {forprime(p=2, nn, forprime(r=2, sqrtint(p\8), if (issquare(q2 = p-8*r^2) && isprime(sqrtint(q2)), print1(p, ", "));););} \\ Michel Marcus, Aug 01 2015
-
Python
from sympy import prime, isprime n = 5000 A260556_list, plimit = [], prime(n)**2+32 for i in range(1,n): q = 8*prime(i)**2 for j in range(1,n): p = q + prime(j)**2 if p < plimit and isprime(p): A260556_list.append(p) A260556_list = sorted(A260556_list) # Chai Wah Wu, Jul 30 2015