cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A260599 Expansion of psi(x^4) / chi(-x)^2 in powers of x where psi(), chi() are Ramanujan theta functions.

Original entry on oeis.org

1, 2, 3, 6, 10, 16, 25, 38, 55, 80, 115, 160, 223, 306, 415, 560, 747, 988, 1301, 1700, 2206, 2850, 3661, 4676, 5950, 7536, 9500, 11936, 14936, 18620, 23141, 28662, 35386, 43566, 53480, 65466, 79937, 97356, 118277, 143370, 173391, 209232, 251966, 302806
Offset: 0

Views

Author

Michael Somos, Jul 29 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 2*x + 3*x^2 + 6*x^3 + 10*x^4 + 16*x^5 + 25*x^6 + 38*x^7 + ...
G.f. = q^7 + 2*q^19 + 3*q^31 + 6*q^43 + 10*q^55 + 16*q^67 + 25*q^79 + ...
		

Crossrefs

Cf. A260574.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x]^2 EllipticTheta[ 2, 0, x^2] / (2 x^(1/2)), {x, 0, n}];
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^4]^4 / (QPochhammer[ x]^2 EllipticTheta[ 3, 0, x^2]), {x, 0, n}];
    nmax=60; CoefficientList[Series[Product[(1+x^k)^2 * (1-x^(8*k))^2 / (1-x^(4*k)),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 14 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^8 + A)^2 / (eta(x + A)^2 * eta(x^4 + A)), n))};

Formula

Expansion of f(-x^4)^4 / (f(-x)^2 * phi(x^2)) in powers of x where phi(), f() are Ramanujan theta functions.
Expansion of q^(-7/12) * eta(q^2)^2 * eta(q^8)^2 / (eta(q)^2 * eta(q^4)) in powers of q.
Euler transform of period 8 sequence [ 2, 0, 2, 1, 2, 0, 2, -1, ...].
2 * a(n) = A260574(4*n + 2).
a(n) ~ exp(sqrt(2*n/3)*Pi) / (8*sqrt(2*n)). - Vaclav Kotesovec, Oct 14 2015

A260600 Expansion of x * psi(x^3) * psi(x^12) / f(-x) in powers of x where psi(), f() are Ramanujan theta functions.

Original entry on oeis.org

0, 1, 1, 2, 4, 6, 9, 14, 20, 29, 42, 58, 80, 111, 149, 200, 268, 353, 463, 606, 784, 1011, 1299, 1656, 2104, 2664, 3354, 4208, 5264, 6555, 8138, 10076, 12428, 15288, 18758, 22944, 27996, 34081, 41377, 50124, 60592, 73075, 87951, 105652, 126652, 151547, 181015
Offset: 0

Views

Author

Michael Somos, Jul 29 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = x + x^2 + 2*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 14*x^7 + 20*x^8 + ...
G.f. = q^11 + q^17 + 2*q^23 + 4*q^29 + 6*q^35 + 9*q^41 + 14*q^47 + ...
		

Crossrefs

Cf. A260574.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(3/2)] EllipticTheta[ 2, 0, x^6] / ( 4 x^(7/8) QPochhammer[ x]), {x, 0, n}];
    nmax=60; CoefficientList[Series[x*Product[(1-x^(6*k)) * (1-x^(24*k)) * (1+x^(3*k)) * (1+x^(12*k)) / ((1-x^k)),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 14 2015 *)
  • PARI
    {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^6 + A)^2 * eta(x^24 + A)^2 / (eta(x + A) * eta(x^3 + A) * eta(x^12 + A)), n))};
    
  • PARI
    q='q+O('q^99); concat(0, Vec(eta(q^6)^2*eta(q^24)^2 / (eta(q)*eta(q^3)*eta(q^12)))) \\ Altug Alkan, Mar 18 2018

Formula

Expansion of q^(-5/6) * eta(q^6)^2 * eta(q^24)^2 / (eta(q) * eta(q^3) * eta(q^12)) in powers of q.
Euler transform of period 24 sequence [1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, -1, ...].
-2 * a(n) = A260574(4*n + 3).
a(n) ~ exp(sqrt(2*n/3)*Pi) / (24*sqrt(2*n)). - Vaclav Kotesovec, Oct 14 2015
Showing 1-2 of 2 results.