cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260596 Array A read by upward antidiagonals in which the entry A(n,k) in row n and column k is defined by A(n,k) = (8 + (3*floor((4*n + 1)/3) - 2)*4^k)/12, n,k >= 1.

Original entry on oeis.org

1, 3, 2, 4, 10, 6, 5, 14, 38, 22, 7, 18, 54, 150, 86, 8, 26, 70, 214, 598, 342, 9, 30, 102, 278, 854, 2390, 1366, 11, 34, 118, 406, 1110, 3414, 9558, 5462, 12, 42, 134, 470, 1622, 4438, 13654, 38230, 21846, 13, 46, 166, 534, 1878, 6486, 17750, 54614, 152918, 87382
Offset: 1

Views

Author

L. Edson Jeffery, Jul 29 2015

Keywords

Comments

Sequence is a permutation of the natural numbers.
Is this array the same as the dispersion A191668?

Examples

			Array A begins:
.   1   2    6   22    86    342   1366    5462   21846    87382
.   3  10   38  150   598   2390   9558   38230  152918   611670
.   4  14   54  214   854   3414  13654   54614  218454   873814
.   5  18   70  278  1110   4438  17750   70998  283990  1135958
.   7  26  102  406  1622   6486  25942  103766  415062  1660246
.   8  30  118  470  1878   7510  30038  120150  480598  1922390
.   9  34  134  534  2134   8534  34134  136534  546134  2184534
.  11  42  166  662  2646  10582  42326  169302  677206  2708822
.  12  46  182  726  2902  11606  46422  185686  742742  2970966
.  13  50  198  790  3158  12630  50518  202070  808278  3233110
...
The triangle T(n, k) begins:
n\k 1  2   3   4    5    6     7     8      9    10 ...
1:  1
2:  3  2
3:  4 10   6
4:  5 14  38  22
5:  7 18  54 150   86
6:  8 26  70 214  598  342
7:  9 30 102 278  854 2390  1366
8: 11 34 118 406 1110 3414  9558  5462
9: 12 42 134 470 1622 4438 13654 38230 21846
10:13 46 166 534 1878 6486 17750 54614 152918 87382
... Triangle formatted by _Wolfdieter Lang_, Aug 16 2015.
		

Crossrefs

Programs

  • Mathematica
    (* Array: *)
    Grid[Table[(8 + (3*Floor[(4*n + 1)/3] - 2)*4^k)/12, {n, 10}, {k, 10}]]
    (* Array antidiagonals flattened: *)
    Flatten[Table[(8 + (3*Floor[(4*(n - k) + 5)/3] - 2)*4^k)/12, {n, 10}, {k, n}]]

Formula

T(n,k) = A(n-k+1,k) = (8 + (3*floor((4*(n-k+1) + 1)/3) - 2)*4^k)/12, n >= k >=1.

Extensions

Edited: Wolfdieter Lang, Aug 16 2015