A260600 Expansion of x * psi(x^3) * psi(x^12) / f(-x) in powers of x where psi(), f() are Ramanujan theta functions.
0, 1, 1, 2, 4, 6, 9, 14, 20, 29, 42, 58, 80, 111, 149, 200, 268, 353, 463, 606, 784, 1011, 1299, 1656, 2104, 2664, 3354, 4208, 5264, 6555, 8138, 10076, 12428, 15288, 18758, 22944, 27996, 34081, 41377, 50124, 60592, 73075, 87951, 105652, 126652, 151547, 181015
Offset: 0
Keywords
Examples
G.f. = x + x^2 + 2*x^3 + 4*x^4 + 6*x^5 + 9*x^6 + 14*x^7 + 20*x^8 + ... G.f. = q^11 + q^17 + 2*q^23 + 4*q^29 + 6*q^35 + 9*q^41 + 14*q^47 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], 2015-2016.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A260574.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(3/2)] EllipticTheta[ 2, 0, x^6] / ( 4 x^(7/8) QPochhammer[ x]), {x, 0, n}]; nmax=60; CoefficientList[Series[x*Product[(1-x^(6*k)) * (1-x^(24*k)) * (1+x^(3*k)) * (1+x^(12*k)) / ((1-x^k)),{k,1,nmax}],{x,0,nmax}],x] (* Vaclav Kotesovec, Oct 14 2015 *)
-
PARI
{a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^6 + A)^2 * eta(x^24 + A)^2 / (eta(x + A) * eta(x^3 + A) * eta(x^12 + A)), n))};
-
PARI
q='q+O('q^99); concat(0, Vec(eta(q^6)^2*eta(q^24)^2 / (eta(q)*eta(q^3)*eta(q^12)))) \\ Altug Alkan, Mar 18 2018
Formula
Expansion of q^(-5/6) * eta(q^6)^2 * eta(q^24)^2 / (eta(q) * eta(q^3) * eta(q^12)) in powers of q.
Euler transform of period 24 sequence [1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 2, 1, 1, -1, ...].
-2 * a(n) = A260574(4*n + 3).
a(n) ~ exp(sqrt(2*n/3)*Pi) / (24*sqrt(2*n)). - Vaclav Kotesovec, Oct 14 2015
Comments