A260625 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with (x+3*y+13*z)*x*y*z a square, where x is a positive integer, and y,z,w are nonnegative integers with y >= z.
1, 2, 1, 1, 4, 4, 1, 2, 4, 5, 3, 1, 4, 7, 2, 1, 7, 6, 5, 6, 6, 5, 4, 4, 6, 11, 4, 3, 10, 7, 2, 2, 7, 7, 8, 4, 4, 10, 1, 5, 13, 7, 3, 5, 10, 6, 1, 1, 8, 13, 7, 5, 10, 13, 5, 7, 7, 6, 9, 3, 10, 13, 3, 1, 15, 13, 5, 10, 12, 8, 3, 6, 8, 16, 8, 8, 14, 8, 2, 6
Offset: 1
Keywords
Examples
a(3) = 1 since 3 = 1^2 + 1^2 + 0^2 + 1^2 with 1 > 0 and (1+3*1+13*0)*1*1*0 =0^2. a(4) = 1 since 4 = 2^2 + 0^2 + 0^2 + 0^2 with 2 > 0, 0 = 0 and (2+3*0+13*0)*2*0*0 = 0^2. a(7) = 1 since 7 = 2^2 + 1^2 + 1^2 + 1^2 with 2 > 0, 1 = 1 and (2+3*1+13*1)*2*1*1 = 6^2. a(39) = 1 since 39 = 2^2 + 3^2 + 1^2 + 5^2 with 2 > 0, 3 > 1 and (2+3*3+13*1)*2*3*1 = 12^2. a(47) = 1 since 47 = 2^2 + 3^2 + 3^2 + 5^2 with 2 > 0, 3 = 3 and (2+3*3+13*3)*2*3*3 = 30^2. a(95) = 1 since 95 = 2^2 + 3^2 + 1^2 + 9^2 with 2 > 0, 3 > 1 and (2+3*3+13*1)*2*3*1 = 12^2. a(191) = 1 since 191 = 2^2 + 3^2 + 3^2 + 13^2 with 2 > 0, 3 = 3 and (2+3*3+13*3)*2*3*3 = 30^2. a(239) = 1 since 239 = 2^2 + 3^2 + 1^2 + 15^2 with 2 > 0, 3 > 1 and (2+3*3+13*1)*2*3*1 = 12^2. a(327) = 1 since 327 = 11^2 + 3^2 + 1^2 + 14^2 with 11 > 0, 3 > 1 and (11+3*3+13*1)*11*3*1 = 33^2. a(439) = 1 since 439 = 10^2 + 5^2 + 5^2 + 17^2 with 10 > 0, 5 = 5 and (10+3*5+13*5)*10*5*5 = 150^2. a(871) = 1 since 871 = 21^2 + 15^2 + 3^2 + 14^2 with 21 > 0, 15 > 3 and (21+3*15+13*3)*21*15*3 = 315^2. a(1167) = 1 since 1167 = 22^2 + 11^2 + 11^2 + 21^2 with 22 > 0, 11 = 11 and (22+3*11+13*11)*22*11*11 = 726^2. a(1199) = 1 since 1199 = 14^2 + 21^2 + 21^2 + 11^2 with 14 > 0, 21 = 21 and (14+3*21+13*21)*14*21*21 = 1470^2. a(1367) = 1 since 1367 = 14^2 + 21^2 + 21^2 + 17^2 with 14 > 0, 21 = 21 and (14+3*21+13*21)*14*21*21 = 1470^2. a(1487) = 1 since 1487 = 9^2 + 29^2 + 6^2 + 23^2 with 9 > 0, 29 > 6 and (9+3*29+13*6)*9*29*6 = 522^2. a(1727) = 1 since 1727 = 2^2 + 21^2 + 21^2 + 29^2 with 2 > 0, 21 = 21 and (2+3*21+13*21)*2*21*21 = 546^2. a(1751) = 1 since 1751 = 9^2 + 17^2 + 15^2 + 34^2 with 9 > 0, 17 > 15 and (9+3*17+13*15)*9*17*15 = 765^2. a(2063) = 1 since 2063 = 18^2 + 19^2 + 3^2 + 37^2 with 18 > 0, 19 > 3 and (18+3*19+13*3)*18*19*3 = 342^2. a(2351) = 1 since 2351 = 15^2 + 35^2 + 15^2 + 26^2 with 15 > 0, 35 > 15 and (15+3*35+13*15)*15*35*15 = 1575^2. a(2471) = 1 since 2471 = 1^2 + 18^2 + 11^2 + 45^2 with 1 > 0, 18 > 11 and (1+3*18+13*11)*1*18*11 = 198^2. a(4647) = 1 since 4647 = 10^2 + 45^2 + 29^2 + 41^2 with 10 > 0, 45 > 29 and (10+3*45+13*29)*10*45*29 = 2610^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
- Zhi-Wei Sun, Refine Lagrange's four-square theorem, a message to Number Theory List, April 26, 2016.
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[(x+3y+13z)x*y*z], r=r+1],{x,1,Sqrt[n]},{z,0,Sqrt[(n-x^2)/2]},{y,z,Sqrt[n-x^2-z^2]}];Print[n," ",r];Label[aa];Continue,{n,1,80}]
Comments