A260638 Irregular table: list of symmetric n X n matrices made from 2-binomial coefficients, read by rows, where the k-th row of any n X n matrix is filled with binomial coefficients [k-1,k-1]..[k+n-2,k-1] (for q=2).
1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 7, 1, 7, 35, 1, 1, 1, 1, 1, 3, 7, 15, 1, 7, 35, 155, 1, 15, 155, 1395, 1, 1, 1, 1, 1, 1, 3, 7, 15, 31, 1, 7, 35, 155, 651, 1, 15, 155, 1395, 11811, 1, 31, 651, 11811, 200787, 1, 1, 1, 1, 1, 1, 1, 3, 7, 15, 31, 63, 1, 7, 35, 155
Offset: 1
Examples
The irregular table starts: 1; 1, 1; 1, 3; 1, 1, 1; 1, 3, 7; 1, 7, 35;
Links
- G. C. Greubel, Table of n, a(n) for n = 1..819
Programs
-
Mathematica
Flatten@Flatten@Table[Table[QBinomial[r + c, r, 2], {r, 0, n}, {c, 0, n}], {n, 0, 5}]
Comments