A260646 Decimal expansion of Pi^12/12!, the absolute density of the Leech lattice.
0, 0, 1, 9, 2, 9, 5, 7, 4, 3, 0, 9, 4, 0, 3, 9, 2, 3, 0, 4, 7, 9, 0, 3, 3, 4, 5, 5, 6, 3, 6, 8, 5, 9, 5, 7, 6, 4, 0, 1, 6, 8, 4, 7, 1, 8, 1, 5, 0, 0, 0, 3, 0, 3, 3, 5, 2, 2, 3, 4, 6, 4, 7, 6, 1, 7, 3, 3, 1, 4, 9, 5, 6, 3, 4, 2, 5, 0, 9, 8, 5, 5, 3, 1, 4, 8, 7
Offset: 0
Examples
0.001929574309403923047903345563685957640168471815...
Links
- Henry Cohn, Abhinav Kumar, Stephen D. Miller, Danylo Radchenko and Maryna Viazovska, The sphere packing problem in dimension 24, Annals of Mathematics, 185 (2017), 1017-1033; arXiv:1603.06518 [math.NT], 2016-2017.
- J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, 1998 (see also Corrections and Updates), Chapter 4, Section 11.
- G. Nebe and N. J. A. Sloane, Home page for Leech lattice.
- A. Roberts, Properties of the Leech Lattice, 2006.
- N. J. A. Sloane and Andrey Zabolotskiy, Table of maximal density of a packing of equal spheres in n-dimensional Euclidean space (some values are only conjectural).
- Wikipedia, Leech lattice
- Index entries for transcendental numbers
Crossrefs
Programs
-
Mathematica
RealDigits[N[Pi^12/12!, 120]]//First (* Michael De Vlieger, Nov 12 2015 *)
-
PARI
{ default(realprecision, 50080); x=Pi^12/12!; for(n=1, 100, d=floor(x); x=(x-d)*10; print1(d, ", ")) }