cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260649 Expansion of (phi(q^3) * phi(q^5) + phi(q) * phi(q^15)) / 2 - 1 in powers of q where phi(q) is a Ramanujan theta function.

Original entry on oeis.org

1, 0, 1, 1, 1, 0, 0, 2, 1, 0, 0, 1, 0, 0, 1, 3, 2, 0, 2, 1, 0, 0, 2, 2, 1, 0, 1, 0, 0, 0, 2, 4, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 3, 1, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 1, 2, 0, 0, 5, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 3, 1, 0, 2, 0, 2, 0, 0
Offset: 1

Views

Author

Michael Somos, Nov 12 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = x + x^3 + x^4 + x^5 + 2*x^8 + x^9 + x^12 + x^15 + 3*x^16 + 2*x^17 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, KroneckerSymbol[ -15, #] If[ Mod[#, 4] == 2, -1, 1] &]];
    a[ n_] := If[ n < 1, 0, Times@@ (Which[# == 1, 1, # == 2, #2 - 1, # < 6, 1, KroneckerSymbol[#, -15] == 1, #2 + 1, True, 1 - Mod[#2, 2]]& @@@ FactorInteger[n])];
    a[ n_] := SeriesCoefficient[QPochhammer[ q^2]^2 QPochhammer[ q^6] QPochhammer[ q^10] QPochhammer[ q^30]^2 / (QPochhammer[ q] QPochhammer[ q^4] QPochhammer[ q^15] QPochhammer[ q^60]) - 1, {q, 0, n}];
  • PARI
    {a(n) = if( n<1, 0, sumdiv(n, d, kronecker(-15, d) * (-1)^(d%4==2) ))};
    
  • PARI
    {a(n) = if( n<1, 0, qfrep( [1, 0; 0, 15], n)[n] + qfrep( [3, 0; 0, 5], n)[n] )};
    
  • PARI
    {a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, e-1, p==3 || p==5, 1, kronecker(p, -15) == 1, e+1, 1-e%2 )))};
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^6 + A) * eta(x^10 + A) * eta(x^30 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^15 + A) * eta(x^60 + A)) - 1, n))};

Formula

Expansion of (eta(q^2)^2 * eta(q^6) * eta(q^10) * eta(q^30)^2) / (eta(q) * eta(q^4) * eta(q^15) * eta(q^60)) - 1 in powers of q.
a(n) is multiplicative with a(2^e) = |e-1|, a(3^e) = a(5^e) = 1, a(p^e) = e+1 if p == 1, 2, 4, 8 (mod 15), a(p^e) = (1 + (-1)^e)/2 if p == 7, 11, 13, 14 (mod 15).
Moebius transform of a period 60 sequence.
G.f.: Sum_{k>0} Kronecker(-15, k) x^k / (1 - (-x)^k).
a(n) = A122855(n) unless n=0.
a(3*n) = a(5*n) = a(n). a(4*n) = A035175(n). a(4*n + 2) = 0.
a(15*n + 7) = a(15*n + 11) = a(15*n + 13) = a(15*n + 14) = 0.