A260649 Expansion of (phi(q^3) * phi(q^5) + phi(q) * phi(q^15)) / 2 - 1 in powers of q where phi(q) is a Ramanujan theta function.
1, 0, 1, 1, 1, 0, 0, 2, 1, 0, 0, 1, 0, 0, 1, 3, 2, 0, 2, 1, 0, 0, 2, 2, 1, 0, 1, 0, 0, 0, 2, 4, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 2, 3, 1, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 1, 2, 0, 0, 5, 0, 0, 0, 2, 2, 0, 0, 2, 0, 0, 1, 2, 0, 0, 2, 3, 1, 0, 2, 0, 2, 0, 0
Offset: 1
Examples
G.f. = x + x^3 + x^4 + x^5 + 2*x^8 + x^9 + x^12 + x^15 + 3*x^16 + 2*x^17 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Mathematica
a[ n_] := If[ n < 1, 0, DivisorSum[ n, KroneckerSymbol[ -15, #] If[ Mod[#, 4] == 2, -1, 1] &]]; a[ n_] := If[ n < 1, 0, Times@@ (Which[# == 1, 1, # == 2, #2 - 1, # < 6, 1, KroneckerSymbol[#, -15] == 1, #2 + 1, True, 1 - Mod[#2, 2]]& @@@ FactorInteger[n])]; a[ n_] := SeriesCoefficient[QPochhammer[ q^2]^2 QPochhammer[ q^6] QPochhammer[ q^10] QPochhammer[ q^30]^2 / (QPochhammer[ q] QPochhammer[ q^4] QPochhammer[ q^15] QPochhammer[ q^60]) - 1, {q, 0, n}];
-
PARI
{a(n) = if( n<1, 0, sumdiv(n, d, kronecker(-15, d) * (-1)^(d%4==2) ))};
-
PARI
{a(n) = if( n<1, 0, qfrep( [1, 0; 0, 15], n)[n] + qfrep( [3, 0; 0, 5], n)[n] )};
-
PARI
{a(n) = my(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, e-1, p==3 || p==5, 1, kronecker(p, -15) == 1, e+1, 1-e%2 )))};
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^6 + A) * eta(x^10 + A) * eta(x^30 + A)^2 / (eta(x + A) * eta(x^4 + A) * eta(x^15 + A) * eta(x^60 + A)) - 1, n))};
Formula
Expansion of (eta(q^2)^2 * eta(q^6) * eta(q^10) * eta(q^30)^2) / (eta(q) * eta(q^4) * eta(q^15) * eta(q^60)) - 1 in powers of q.
a(n) is multiplicative with a(2^e) = |e-1|, a(3^e) = a(5^e) = 1, a(p^e) = e+1 if p == 1, 2, 4, 8 (mod 15), a(p^e) = (1 + (-1)^e)/2 if p == 7, 11, 13, 14 (mod 15).
Moebius transform of a period 60 sequence.
G.f.: Sum_{k>0} Kronecker(-15, k) x^k / (1 - (-x)^k).
a(n) = A122855(n) unless n=0.
a(3*n) = a(5*n) = a(n). a(4*n) = A035175(n). a(4*n + 2) = 0.
a(15*n + 7) = a(15*n + 11) = a(15*n + 13) = a(15*n + 14) = 0.
Comments