cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260650 G.f. satisfies: A(x)^2 = A( x^2/(1-4*x)^2 ).

Original entry on oeis.org

1, 4, 18, 88, 455, 2444, 13486, 75912, 433935, 2511388, 14684422, 86611848, 514704064, 3078845696, 18523994024, 112026315616, 680626958899, 4152411174284, 25428402204982, 156247439709832, 963048223399984, 5952595420121536, 36887847899094888, 229132114803540320, 1426367728966653535, 8897049258366111004
Offset: 1

Views

Author

Paul D. Hanna, Nov 16 2015

Keywords

Comments

Radius of convergence is r = (9 - sqrt(17))/32 where r = r^2/(1-4*r)^2 with A(r) = 1.
Compare to: C(x)^2 = C( x^2/(1-2*x)^2 ) where C(x) = (1-2*x-sqrt(1-4*x))/(2*x) is a g.f. of the Catalan numbers, A000108.

Examples

			G.f.: A(x) = x + 4*x^2 + 18*x^3 + 88*x^4 + 455*x^5 + 2444*x^6 + 13486*x^7 + 75912*x^8 + 433935*x^9 + 2511388*x^10 + 14684422*x^11 + 86611848*x^12 +...
where A( x^2/(1-4*x)^2 ) = A(x)^2,
A( x^2/(1-4*x)^2 ) = x^2 + 8*x^3 + 52*x^4 + 320*x^5 + 1938*x^6 + 11696*x^7 + 70648*x^8 + 427776*x^9 + 2597831*x^10 + 15824664*x^11 + 96687516*x^12 +...
Also, A( x/(1+4*x) ) = A(x^2)^(1/2),
A( x/(1+4*x) ) = x + 2*x^3 + 7*x^5 + 30*x^7 + 143*x^9 + 726*x^11 + 3840*x^13 + 20904*x^15 + 116275*x^17 + 657798*x^19 + 3772912*x^21 + 21890152*x^23 +...
Let B(x) = x/Series_Reversion( A(x) ), so that A(x) = x*B(A(x)), then
B(x) = 1 + 4*x + 2*x^2 - x^4 + 2*x^6 - 5*x^8 + 12*x^10 - 30*x^12 + 82*x^14 - 233*x^16 + 668*x^18 - 1949*x^20 + 5802*x^22 +...+ A107087(n)*x^(2*n) +...
such that B(x) = F(x^2) + 4*x = F(x)^2 where F(x) is the g.f. of A107087.
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x); for(i=1,#binary(n+1), A = sqrt( subst(A,x, x^2/(1-4*x +x*O(x^n))^2) ) ); polcoeff(A,n)}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. satisfies:
(1) A(x) = -A( -x/(1-8*x) ).
(2) A(x^2) = A( x/(1+4*x) )^2 = A( -x/(1-4*x) )^2.
(3) A( x/(1+2*x)^2 ) = -A( -x/(1-2*x)^2 ), an odd function.
(4) A( x/(1+2*x)^2 )^2 = A( x^2/(1+4*x^2)^2 ), an even function.