cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A330871 Numbers k such that k and k+1 are both phi-practical numbers (A260653).

Original entry on oeis.org

1, 2, 3, 15, 255, 735, 2624, 3135, 4095, 4784, 5264, 5984, 7215, 7424, 7904, 9344, 10064, 10335, 10815, 11024, 11984, 12375, 12495, 13695, 16184, 16575, 22575, 22784, 22815, 26144, 26264, 27104, 30015, 30855, 30975, 32384, 33824, 34335, 34544, 38024, 38415, 39104
Offset: 1

Views

Author

Amiram Eldar, Apr 29 2020

Keywords

Examples

			1 is a term since both 1 and 2 are phi-practical numbers.
		

Crossrefs

Programs

  • Mathematica
    phiPracticalQ[n_] := If[n<1, False, If[n==1, True, (lst = Sort @ EulerPhi @ Divisors[n]; ok=True; Do[If[lst[[m]]>Sum[lst[[l]], {l, 1, m-1}]+1, (ok=False; Break[])], {m, 1, Length[lst]}]; ok)]]; Select[Range[40000], phiPracticalQ[#] && phiPracticalQ[#+1] &] (* after Frank M Jackson at A260653 *)

A359417 Phi-practical numbers (A260653) whose divisors have distinct values of the Euler totient function (A000010).

Original entry on oeis.org

1, 3, 15, 105, 165, 195, 255, 495, 525, 735, 975, 1155, 1485, 1785, 1815, 1995, 2145, 2415, 2535, 2625, 2805, 3045, 3135, 3255, 3315, 3675, 3705, 3795, 3885, 4305, 4455, 4485, 4515, 4785, 4845, 4875, 4935, 5115, 5145, 5445, 5565, 5655, 5865, 6045, 6105, 6195, 6405
Offset: 1

Views

Author

Amiram Eldar, Dec 31 2022

Keywords

Comments

A phi-practical number k is a number k such that each number in the range 1..k is a subsum of a the multiset {phi(d) : d | k}. This sequence is restricted to cases in which all the values in this multiset are distinct.
Are all the terms above 3 divisible by 5?

Crossrefs

Intersection of A260653 and A326835.
Cf. A000010.

Programs

  • Mathematica
    phiPracticalQ[n_] := If[n<1, False, If[n==1, True, (lst = Sort @ EulerPhi @ Divisors[n]; ok = True; Do[If[lst[[m]]>Sum[lst[[l]], {l, 1, m-1}]+1, (ok=False; Break[])], {m, 1, Length[lst]}]; ok)]]; (* Frank M Jackson's code at A260653 *)
    Select[Range[40000], UnsameQ @@ EulerPhi[Divisors[#]] && phiPracticalQ[#]  &]

A336507 Lambda-practical numbers (A336506) that are not phi-practical (A260653).

Original entry on oeis.org

45, 135, 225, 405, 675, 765, 855, 1035, 1125, 1215, 1275, 1305, 1395, 1665, 1845, 1935, 2025, 2115, 2295, 2565, 3105, 3375, 3645, 3825, 3915, 4185, 4275, 4995, 5175, 5535, 5625, 5805, 6075, 6345, 6375, 6525, 6885, 6975, 7155, 7695, 7965, 8235, 8325, 9045, 9225
Offset: 1

Views

Author

Amiram Eldar, Jul 23 2020

Keywords

Comments

Thompson (2012) proved that all phi-practical numbers are lambda-practical, that all the terms of this sequence are not squarefree numbers, and that this sequence is infinite: for example, 45 * Product_{i=10..k} prime(i) is a term for all k >= 10.

Crossrefs

Subsequence of A013929.
Complement of A260653 with respect to A336506.

Programs

  • Mathematica
    phiPracticalQ[n_] := If[n<1, False, If[n==1, True, (lst = Sort @ EulerPhi @ Divisors[n]; ok=True; Do[If[lst[[m]]>Sum[lst[[l]], {l, 1, m-1}]+1, (ok=False; Break[])], {m, 1, Length[lst]}]; ok)]]; rep[v_, c_] := Flatten @ Table[ConstantArray[v[[i]], {c[[i]]}], {i, Length[c]}]; lambdaPracticalQ[n_] := Module[{d = Divisors[n], lam, ns, r, x}, lam = CarmichaelLambda[d]; ns = EulerPhi[d]/lam; r = rep[lam, ns]; Min @ Rest @ CoefficientList[Series[Product[1 + x^r[[i]], {i, Length[r]}], {x, 0, n}], x] > 0]; Select[Range[1000], !phiPracticalQ[#] && lambdaPracticalQ[#] &] (* after Frank M Jackson at A260653 *)

A359420 Numbers that are both practical (A005153) and phi-practical (A260653).

Original entry on oeis.org

1, 2, 4, 6, 8, 12, 16, 18, 20, 24, 30, 32, 36, 40, 42, 48, 54, 56, 60, 64, 72, 80, 84, 90, 96, 100, 108, 112, 120, 126, 128, 132, 140, 144, 150, 156, 160, 162, 168, 176, 180, 192, 198, 200, 208, 210, 216, 220, 224, 234, 240, 252, 256, 260, 264, 270, 272, 280, 288
Offset: 1

Views

Author

Amiram Eldar, Dec 31 2022

Keywords

Comments

First differs from A325795 at n = 45, and from A325781 at n = 36.
Numbers k such that each number in the range 1..sigma(k) is a sum of distinct divisors of k, and each number in the range 1..k is a subsum of the multiset {phi(d) : d | k}.

Crossrefs

Intersection of A005153 and A260653.
Cf. A000010 (phi), A000203 (sigma).

Programs

  • Mathematica
    f[p_, e_] := (p^(e + 1) - 1)/(p - 1); pracQ[n_] := (ind = Position[(fct = FactorInteger[n])[[;; , 1]]/(1 + FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)]) == {};
    phiPracticalQ[n_] := If[n == 1, True, (lst = Sort@EulerPhi@Divisors[n]; ok = True; Do[If[lst[[m]] > Sum[lst[[l]], {l, 1, m - 1}] + 1, (ok = False; Break[])], {m, 1, Length[lst]}]; ok)]; (* Frank M Jackson's code at A260653 *)
    Select[Range[300], pracQ[#] && phiPracticalQ[#] &]

A286906 Unitary phi-practical numbers: numbers k such that each m < k is a sum of a subset of {uphi(d) : d | k, gcd(d,k/d)=1}, where uphi is the unitary totient function (A047994).

Original entry on oeis.org

1, 2, 3, 6, 12, 15, 30, 42, 60, 84, 105, 120, 132, 156, 165, 195, 210, 240, 255, 330, 390, 420, 462, 510, 546, 570, 660, 690, 714, 780, 798, 840, 870, 924, 930, 966, 1020, 1050, 1092, 1140, 1155, 1218, 1302, 1320, 1365, 1380, 1428, 1554, 1560, 1596, 1680
Offset: 1

Views

Author

Amiram Eldar, May 15 2017

Keywords

Comments

The unitary version of A260653.

Examples

			The unitary divisors of 12 are 1, 3, 4 and 12, and the set of their uphi values is {1, 2, 3, 6}. Each number below 12 is the sum of a subset, e.g., 11 = 2 + 3 + 6, 10 = 1 + 3 + 6, etc.
		

Crossrefs

Programs

  • Mathematica
    uphi[n_] := If[n == 1, 1, (Times @@ (Table[#[[1]]^#[[2]] - 1, {1}] & /@ FactorInteger[n]))[[1]]]; uDivisors[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &]; uPhiPracticalQ[n_] := If[n < 1, False, If[n == 1, True, (lst = Sort@Map[uphi, uDivisors[n]]; ok = True; Do[If[lst[[m]] > Sum[lst[[l]], {l, 1, m - 1}] + 1, (ok = False; Break[])], {m, 1, Length[lst]}]; ok)]]; Select[Range[10000], uPhiPracticalQ]

A336503 2-practical numbers: numbers m such that the polynomial x^m - 1 has a divisor of every degree <= m in the prime field F_2[x].

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 14, 15, 16, 18, 20, 21, 24, 28, 30, 32, 36, 40, 42, 45, 48, 54, 56, 60, 63, 64, 70, 72, 80, 84, 90, 96, 100, 105, 108, 112, 120, 124, 126, 128, 132, 135, 136, 140, 144, 147, 150, 154, 156, 160, 162, 165, 168, 176, 180, 182, 186, 189, 192
Offset: 1

Views

Author

Amiram Eldar, Jul 23 2020

Keywords

Comments

For a rational prime number p, a "p-practical number" is a number m such that the polynomial x^m - 1 has a divisor of every degree <= m in F_p[x], the prime field of order p.
A number m is 2-practical if and only if every number 1 <= k <= m can be written as Sum_{d|m} A007733(d) * n_d, where A007733(d) is the multiplicative order of 2 modulo the odd part of d, and 0 <= n_d <= phi(d)/A007733(d).
The number of terms not exceeding 10^k for k = 1, 2, ... are 6, 34, 243, 1790, 14703, 120276, 1030279, ...

Crossrefs

Programs

  • Mathematica
    rep[v_, c_] := Flatten @ Table[ConstantArray[v[[i]], {c[[i]]}], {i, Length[c]}]; mo[n_, p_] := MultiplicativeOrder[p, n/p^IntegerExponent[n, p]]; ppQ[n_, p_] := Module[{d = Divisors[n]}, m = mo[#, p] & /@ d; ns = EulerPhi[d]/m; r = rep[m, ns]; Min @ Rest @ CoefficientList[Series[Product[1 + x^r[[i]], {i, Length[r]}], {x, 0, n}], x] >  0]; Select[Range[200], ppQ[#, 2] &]

A336504 3-practical numbers: numbers m such that the polynomial x^m - 1 has a divisor of every degree <= m in the prime field F_3[x].

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 9, 12, 15, 16, 18, 20, 24, 26, 27, 30, 32, 36, 39, 40, 42, 44, 45, 48, 52, 54, 56, 60, 63, 64, 66, 72, 78, 80, 81, 84, 88, 90, 96, 99, 100, 104, 105, 108, 112, 117, 120, 126, 128, 130, 132, 135, 140, 144, 150, 156, 160, 162, 165, 168, 176, 180
Offset: 1

Views

Author

Amiram Eldar, Jul 23 2020

Keywords

Comments

For a rational prime number p, a "p-practical number" is a number m such that the polynomial x^m - 1 has a divisor of every degree <= m in F_p[x], the prime field of order p.
A number m is 3-practical if and only if every number 1 <= k <= m can be written as Sum_{d|m} A007734(d) * n_d, where A007734(d) is the multiplicative order of 3 modulo the largest divisor of d not divisible by 3, and 0 <= n_d <= phi(d)/A007734(d).
The number of terms not exceeding 10^k for k = 1, 2, ... are 7, 41, 258, 1881, 15069, 127350, 1080749, ...

Crossrefs

Programs

  • Mathematica
    rep[v_, c_] := Flatten @ Table[ConstantArray[v[[i]], {c[[i]]}], {i, Length[c]}]; mo[n_, p_] := MultiplicativeOrder[p, n/p^IntegerExponent[n, p]]; ppQ[n_, p_] := Module[{d = Divisors[n]}, m = mo[#, p] & /@ d; ns = EulerPhi[d]/m; r = rep[m, ns]; Min @ Rest @ CoefficientList[Series[Product[1 + x^r[[i]], {i, Length[r]}], {x, 0, n}], x] >  0]; Select[Range[200], ppQ[#, 3] &]

A336505 5-practical numbers: numbers m such that the polynomial x^m - 1 has a divisor of every degree <= m in the prime field F_5[x].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 18, 20, 24, 25, 30, 32, 35, 36, 39, 40, 42, 44, 45, 48, 50, 52, 54, 55, 56, 60, 62, 64, 65, 66, 70, 72, 75, 78, 80, 84, 88, 90, 93, 96, 100, 104, 105, 108, 110, 112, 117, 120, 124, 125, 126, 128, 130, 132, 135, 140, 144, 150
Offset: 1

Views

Author

Amiram Eldar, Jul 23 2020

Keywords

Comments

For a rational prime number p, a "p-practical number" is a number m such that the polynomial x^m - 1 has a divisor of every degree <= m in F_p[x], the prime field of order p.
A number m is 5-practical if and only if every number 1 <= k <= m can be written as Sum_{d|m} A007736(d) * n_d, where A007736(d) is the multiplicative order of 5 modulo the largest divisor of d not divisible by 5, and 0 <= n_d <= phi(d)/A007736(d).
The number of terms not exceeding 10^k for k = 1, 2, ... are 7, 46, 286, 2179, 16847, 141446, 1223577, ...

Crossrefs

Programs

  • Mathematica
    rep[v_, c_] := Flatten @ Table[ConstantArray[v[[i]], {c[[i]]}], {i, Length[c]}]; mo[n_, p_] := MultiplicativeOrder[p, n/p^IntegerExponent[n, p]]; ppQ[n_, p_] := Module[{d = Divisors[n]}, m = mo[#, p] & /@ d; ns = EulerPhi[d]/m; r = rep[m, ns]; Min @ Rest @ CoefficientList[Series[Product[1 + x^r[[i]], {i, Length[r]}], {x, 0, n}], x] >  0]; Select[Range[200], ppQ[#, 5] &]

A336506 Lambda-practical numbers: numbers that are p-practical for every rational prime p.

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 12, 15, 16, 18, 20, 24, 30, 32, 36, 40, 42, 45, 48, 54, 56, 60, 64, 72, 80, 84, 90, 96, 100, 105, 108, 112, 120, 126, 128, 132, 135, 140, 144, 150, 156, 160, 162, 165, 168, 176, 180, 192, 195, 198, 200, 208, 210, 216, 220, 224, 225, 234, 240
Offset: 1

Views

Author

Amiram Eldar, Jul 23 2020

Keywords

Comments

For a rational prime number p, a "p-practical number" is a number m such that the polynomial x^m - 1 has a divisor of every degree <= m in F_p[x], the prime field of order p. See A336503, A336504 and A336505 for examples.
A number m is lambda-practical if and only if every number 1 <= k <= m can be written as Sum_{d|m} lambda(d) * n_d, where lambda(d) = A002322(d) is the Carmichael lambda function, and 0 <= n_d <= phi(d)/lambda(d).
A squarefree number is lambda-practical if and only if it is phi-practical (A260653). All phi-practical numbers are lambda-practical, but there are infinitely many lambda-practical numbers that are not phi-practical: 45, 135, 225, 405, 675, ... (A336507).
If N(x) is the number of terms not exceeding, x then there are two positive constants c_1 and c_2 such that c_1 * x/log(x) <= N(x) <= c_2 * x/log(x) for all x >= 2.

Crossrefs

Disjoint union of A260653 and A336507.

Programs

  • Mathematica
    rep[v_, c_] := Flatten @ Table[ConstantArray[v[[i]], {c[[i]]}], {i, Length[c]}]; lpQ[n_] := Module[{d = Divisors[n], lam, ns, r, x}, lam = CarmichaelLambda[d]; ns = EulerPhi[d]/lam; r = rep[lam, ns]; Min @ Rest @ CoefficientList[Series[Product[1 + x^r[[i]], {i, Length[r]}], {x, 0, n}], x] > 0]; Select[Range[250], lpQ]

A361922 Infinitary phi-practical numbers: numbers m such that each k <= m is a subsum of a the multiset {iphi(d) : d infinitary divisor of m}, where iphi is an infinitary analog of Euler's phi function (A091732).

Original entry on oeis.org

1, 2, 3, 6, 8, 12, 15, 24, 30, 40, 42, 56, 60, 72, 84, 105, 108, 120, 132, 135, 156, 165, 168, 195, 210, 216, 240, 255, 264, 270, 280, 312, 330, 360, 378, 384, 390, 408, 420, 440, 456, 462, 480, 504, 510, 520, 540, 546, 552, 570, 600, 616, 640, 660, 672, 680, 690
Offset: 1

Views

Author

Amiram Eldar, Mar 30 2023

Keywords

Crossrefs

Similar sequences: A260653, A286906, A334901.

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse@IntegerDigits[e, 2], 1]));
    iphi[1] = 1; iphi[n_] := Times @@ (Flatten@ (f @@@ FactorInteger[n]) - 1);
    idivs[n_] := Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[n] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]; idivs[1] = {1};
    iPhiPracticalQ[n_] := Module[{s = Sort@ Map[iphi, idivs[n]], ans = True}, Do[If[s[[j]] > Sum[s[[i]], {i, 1, j - 1}] + 1, ans = False; Break[]], {j, 1, Length[s]}]; ans]; Select[Range[700], iPhiPracticalQ]
Showing 1-10 of 13 results. Next