cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A260662 Decimal expansion of the generalized Glaisher-Kinkelin constant A(13).

Original entry on oeis.org

1, 2, 2, 2, 9, 4, 4, 2, 5, 1, 8, 0, 8, 1, 3, 3, 8, 7, 2, 6, 4, 7, 8, 9, 9, 9, 6, 0, 7, 2, 7, 7, 1, 7, 9, 8, 8, 5, 6, 1, 2, 6, 5, 8, 0, 3, 1, 2, 9, 5, 3, 2, 9, 5, 0, 1, 0, 8, 3, 7, 2, 8, 1, 0, 3, 4, 4, 6, 0, 6, 4, 2, 2, 7, 6, 8, 6, 6, 2, 0, 3, 0, 3, 0, 0, 1, 2, 6, 4, 2, 6, 9, 2, 1, 7, 5, 1, 1, 4, 2, 6, 1, 2, 4, 4, 9, 1, 8, 3, 6, 0, 0, 2, 0, 9
Offset: 1

Views

Author

G. C. Greubel, Nov 13 2015

Keywords

Comments

Also known as the thirteenth Bendersky constant.

Examples

			1.2229442518081338726478999607277179885...
		

Crossrefs

Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).

Programs

  • Mathematica
    N[Exp[(1/14)*HarmonicNumber[13]*BernoulliB[14] - Zeta'[-13]], 100]
    Exp[N[(BernoulliB[14]/14)*(EulerGamma + Log[2*Pi] - Zeta'[14]/Zeta[14]), 200]]

Formula

A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th Harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(13) = exp((1/14)*HarmonicNumber(13)*Bernoulli(14) - RiemannZeta'(-13)).
A(13) = exp((B(14)/14)*(EulerGamma + Log(2*Pi) - (zeta'(14)/zeta(14)))).
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^14-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(14)/14 = 1/12 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024